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Collecting fares through “smart cards” is becoming standard in most 
advanced public transport networks of major cities around the world. 
Using such cards has advantages for users as well as operators. Whereas for 
travellers smart cards are mainly increasing convenience, operators value 
in particular the reduced money handling fees. Smart cards further make 
it easier to integrate the fare systems of several operators within a city and 
to split the revenues. The electronic tickets also make it easier to create 
complex fare systems (time and space differentiated prices) and to give 
incentives to frequent or irregular travellers. Less utilized though appear 
to be the behavioural data collected through smart card data. The records, 
even if anonymous, allow for a much better understanding of passengers’ 
travel behaviour as various literature has begun to demonstrate. This 
information can be used for better service planning.
 This book handles three major topics; how passenger behaviour can 
be estimated using smart card data, how smart card data can be combined 
with other trip databases, and how the public transport service level can be 
better evaluated if smart card data are available. The book discusses theory 
as well as applications from cities around the world.

September 2016 Fumitaka Kurauchi
Jan-Dirk Schmöcker
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Chapter 1: An Overview on Opportunities and Challenges of Smart Card Data Analysis 1

A B S T R A C T
 In this chapter, an overview on opportunities and challenges for the
 use of smart card data for public transport planning is provided. As
 an introduction to the topic examples of customer services that have
 become feasible due to smart cards are discussed. These include smart
 card as a general payment method for a wide range of services, pricing
 caps as well as “loyalty points”. For operators, smart cards provide
 opportunities such as revised fare structure. The focus of this chapter
 and this book in general is on the benefits that emerge through better
 understanding of customer behavioural patterns for short and longer
 term service planning. This chapter also points out that in practice smart
 card data are though not yet as much used as one might expect given
 these opportunities. As explanation for this challenges connected to big
 data issues, privacy and missing information are discussed. The chapter
concludes by providing an overview on the contributions in this book.

1. INTRODUCTION

Automatic Fare Collection through “smart cards” is becoming a standard in 
most advanced public transport networks of major cities around the world. 
Using such cards has an advantage for users as well as operators. Whereas 
smart cards are mainly increasing convenience for travellers, operators 
value in particular the reduced money handling fees. Smart cards further 
make it easier to integrate the fare systems of several operators within a 
city and to split the revenues. 
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2 Public Transport Planning with Smart Card Data

 These are the primary reasons that led in many cities to invest in the 
introduction of smart card systems. The focus of this book is though the 
secondary benefits that are obtained through smart card data. Smart 
card data are increasingly recognised as a rich data source to better 
understand demand patterns of passengers. As this book will discuss, 
origin-destination matrices, routes and activities all can be inferred from 
this data. Furthermore, smart card data can be used partly as replacement 
of other data sources to collect evaluation measures of the service quality. 
That is, the time and the location stamps of the records allow the operator 
to measure, for example, actual versus the scheduled arrivals of the buses. 
 Before discussing the analysis options in detail the following section 
will give an overview on the spread of smart card systems across the 
world, including the differences in the collected data. Recognizing these 
differences is not only important to understand the analysis potential 
but also to understand the challenges an analyst faces. These challenges 
together with a discussion on actual usage of smart card data in practice is 
the topic of Section 4.
 Section 5 then provides an overview on the contents of the following 
chapters in the book. The primary purpose of the book is to provide an 
overview on smart card data analysis opportunities and how challenges 
are overcome. Evidently, considering that the literature on smart card data 
is rapidly growing, the book does not claim completeness. The section 
will hence briefly discuss further data analysis options and examples 
which could be perceived as important but missing in this book before 
concluding.

2. SMART CARD SYSTEMS AND DATA FEATURES 

The numbers of smart cards are increasing year by year, for example 
Wikipedia lists more than 350 smart card systems all over the world 
covering all continents. As this book focuses on smart card systems that 
have their primary application payment for public transport, one needs to 
recognise that smart cards are in use for a wider range of applications. An 
important development is therefore the integration of different applications 
into smart card systems.
 Through the worldwide spread of smart cards, international 
standardization, which define the signal frequency and the data 
transmission speed, has progressed. For the contactless cards there are 
several standards that cover the lower levels of interface between cards and 
terminals and mainly three types of standard, referred to as Type A, Type 
B and FeliCa, are widely prevalent. For transit smart cards, either Type-A 
or FeliCa systems are adopted. Type-A systems are common all over the 
world since they could be introduced with low cost. The biggest advantage 
of the FeliCa system is the faster transmission speed. Due to this feature, 
FeliCa system cards prevail in many transit companies in Japan where it 
is essential to handle large amount of passengers in short time during the 
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rush hours. For further detailed criteria of these standards, readers can 
refer to Pelletier et al. (2011). Table 1 shows information on the selection of 
noteworthy major smart cards that are issued mainly for the purpose of 
transportation fare collection. For users (and data analysts) the increasing 
standardization further means that not only the arrangement of same card 
usage for different operators becomes easier but also the usage of the same 
card in different cities. For example, in Japan since 2013 most of the smart 
cards from major public operators can be used across the country. The 
Netherlands is one of the first countries where a single smart card can be 
used throughout the country for local as well as long distance travel.
 The important aspect for data analysis and transport demand 
management possibilities is whether the transactions are pre-paid (debit) 
or post-paid (credit). Although most of the smart card systems adopt the 
pre-paid system, an increasing number also offer post-payment systems, 
mostly not in replacement but in addition to pre-paid ones. This means, 
that, similar to credit cards, the total transportation fares accumulated 
over a month will debit from the bank account next month. The drawback 
of the post-payment system for the user is that it requires personal details 
and an application for qualification to get the cards. This means that 
it often takes a considerable amount of time until the cards are issued. 
However, the post-paid system cards also have some merits for the users. 
First of all, since the bank debits the fare later from the account, users 
do not have to worry about the remaining money on the card. Secondly, 
with personalized post-payment cards, loyalty schemes are more widely 
spread. One example is the “PiTaPa” card, which could be used for fare 
payment on most of the private trains and bus companies in the Kansai 
region of Japan. Operators utilizing PiTaPA offer different amount of 
discounts per journey and some set an upper limit for the fare-to-be paid 
for pre-registered origins and destinations by the users. For other (not pre-
registered) journeys PiTaPa also offers discount based on how much fare 
the users have paid or how often the users have used PiTaPA for public 
transport during the previous month. Furthermore, some of the transit 
companies in Japan give points for the users based on the boarding history 
as well as the shopping history at the designated shops. In Chapter 7 this is 
further discussed with the help of an example of Shizutetsu Railway Co., 
Ltd., a private rail operator in Shizuoka, Japan. The cardholders can use 
these points for fare or shopping discounts in stores associated with the 
transport operator. Therefore, for demand management, in general post-
paid systems are preferable. For the data analyst post-paid systems further 
mean that travel data and socio-demographic data required for registration 
can be obtained, though obviously privacy issues are a major concern for 
this.
 Table 1 includes some additional observations on selected smart cards 
that appear noteworthy to us: The Octopus card was one of the early card 
schemes not only for transport but also in general promoting the usage of 
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the card for different purposes, which is also included in the etymology 
of the card’s name. Nowadays, the card could be used for a variety of 
shopping including online purchases. 
 Several operators have also been promoting the uptake of smart cards 
by providing cheaper fares compared to paper tickets. Noteworthy are the 
discounts provided in London, where paper tickets can be priced double 
compared to the payment by Oyster card. In Japan, generally no discounts 
are given for the usage of smart cards. Recently though, due to an increase 
in the VAT, there are small price differences between paper tickets and 
payments by smart cards. The increase in fares due to VAT raise is reflected 
accurate to 1 Yen for smart cards where paper tickets are rounded to the 
nearest 10 Yen. Such minor price differences are though unlikely to have 
an impact on travel decisions. More important might be the effect of “daily 
caps” or, recently, “weekly caps” that have been applied in London. These 
caps mean that the user does not have to decide in the morning or the 
beginning of the week anymore whether it will be worth purchasing a 
daily or weekly pass. Instead the traveller has the guarantee that the smart 
card will stop charging the user if the equivalent prices of a daily or weekly 
pass has been accumulated through single fares. In how far this scheme 
has any impact on behaviour is not yet known to our knowledge. Finally, 
it should be noted that in some cities, such as Santiago, it is compulsory for 

Table 1.  Information on selected smart card systems

Name of 
Card

City and 
Country

Year of 
Introduction

Noteworthy Points (but not necessarily unique  
features of these cards) 

Octopus Card Hong Kong, 
China 1997

Various added functions, including payment at international 
chains such as Starbucks or McDonald’s. Currently replacement of 
1st generation cards: 2nd generation cards allow, among others, 
online payment. 

Suica
Various 
metropolitan 
areas in Japan

2001
The fare calculation is by one yen unit with the smart card 
whereas the fare calculation for paper-based tickets is by ten yen 
units. Mutual use of other smart cards such as ICOCA or PASMO.  

Oyster Card London, UK 2003 Paying by smart card is much cheaper than paper ticket; “daily  
cap” and “weekly caps” are implemented on smart cards.

T-money
Various 
metropolitan 
areas in Korea

2004

Over 100 million cards (accumulated) are allotting by now (Korea 
smart card, 2016). The system is also supplied to operators outside 
Korea. Chapter 3 shows an application of analysis with T-Money 
data from Seoul. 

OV-Chip Card
Nationwide 
in the 
Netherlands

2005 
(Rotterdam 
only)

Can be used for almost all public transport in the Netherlands, 
including local and long distance travel (see Chapter 12).

LuLuCa Shizuoka, 
Japan 2006 Extensive loyalty point scheme to encourage usage of card for 

transit as well as for shopping (see Chapter 7).

Bip! Card Santiago, Chile 2007 Bip! Card is the only allowed payment method on buses. (see 
Chapters 2 and 9)
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users to get a smart card as cash payment on some modes of transport is 
not possible anymore.

3. ANALYSIS CHALLENGES 

As the smart cards are widely spread one might expect that their historical 
data records have also been exploited heavily for transportation planning. 
This appears tough for many operators not yet to be the case. Imai et al. 
(2012) conducted a survey among 66 Japanese operators asking them about 
the purposes they use the smart card data for. The results are shown in 
Figure 1. One can see that many operators do not utilize the smart data 
card for transport planning purposes at all. From those who use the data, 
the majority uses them only for some simple collective analysis or for 
reporting purposes. This situation is probably not unique to Japan and also 
in other countries it will be often only large, or a few innovative, transport 
operators that have enough resources to dedicate themselves to the analysis 
of the vast amount of data that they obtain from the smart cards.

0                5               10               15              20              25              30

Number of operators (out of 66 respondents)

Aggr. analysis of passenger numbers

Timetable revisions

Revenue split between operators

Service quality monitoring

Official reports

Others

Fig. 1. Usage of smart card data by operators in Japan according to a survey in 2012

Source: Table adjusted from Imai 2012.

A main reason for this situation is that, although most would agree that the 
potential information to be derived from the data is useful, there are also 
several challenges to be overcome before the data become in fact useful. A 
list of data potentials and challenges is given in Table 2. The importance/
benefits of the first two points (data at lower cost, aggregate performance 
statistics) will be fairly obvious to most operators. The latter two points on 
more detailed information about travellers will especially help providers to 
develop strategies to better target the services. This discussion continues in 
the next section awhereas the focus in this section is on the challenges. 
 The first challenge, the representativeness of population from the smart 
card sample, may not be a significant problem anymore in many cities since 



6 Public Transport Planning with Smart Card Data

the rate of payment by smart cards is increasing year by year. Nevertheless, 
operators need to be aware that in particular irregular users might be 
under-represented in the smart card data sample.
 Connected to the increasing data size are though also “big data 
issues”. Since smart cards collect daily passenger behaviour continuously, 
the data size may become so large that it is sometimes difficult to handle. 
Smart card data can therefore be regarded as one type of ‘big data’. 
A major difference to traditional data analysis is that ‘big data’ often 
provide information on nearly the whole system population. In traditional 
data analysis, a ‘hypothesis’ should be first set and sampling should be 
carried out based on this hypothesis. Then the population characteristics 
assessment is done by the sample data and the hypothesis is tested. In 
contrast in big data analysis such a sampling strategy is not needed any 
more. What instead becomes important in big data analysis is how relevant 
samples are picked up and how important information will be extracted 
from the data. Statistical methods such as factor analysis and/or clustering 
analysis are often adopted to understand the sample characteristics, but the 
procedure is far more difficult considering the data size. Also, one should 
recognise that when using big data, it becomes too easy to reject the null 
hypothesis of no statistical significance as discussed in Harding 2013. 
Therefore, special consideration might be necessary in handling big data.
 The second challenge, privacy issues, occurs in handling smart 
card data since the cards can contain private information, including 
monetary information, especially if it is a post-payment card. This makes 
it often difficult to get access to smart card data and/or to develop analysis 
methodologies that remain data confidentiality. Ideally, a universal rule 
in utilizing smart card data in public transport service management and 
evaluation should be discussed, though this will be difficult given different 
law constraints in different countries. Similar to privacy rules, there is 
often a contract that data must not be given to others to protect a possible 
deficiency. Such a contract is active especially when different companies 
are sharing the same card such as, in Japan, PASMO in Tokyo metropolitan 
area and the PiTaPa card in the Kansai area.

Table 2. Potential and challenges of smart card data that motivate this book

Advantages/Potential Disadvantages/Challenges

• To get large amount of data on passengers’ behaviour 
with lower cost • Representativeness of population is not guaranteed

• To analyse aggregate behaviour including “dynamic 
aspects” • Big data issues

• To analyse data on personal level to understand 
variation in behaviour • Privacy and contractual issues

• To match data with other information (e.g., purchase 
history during the trip) • Missing information
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 Another common challenge encountered by analysts is missing 
information. This could be due to above-mentioned privacy regulations, 
due to missing records, or simply because they are not recorded with smart 
card data. In particular for pre-paid smart cards there are usually few or 
no socio-demographic information recorded. Chapters 3 and 5 in this book 
will discuss some probabilistic approaches to overcome such challenges. 
Further important information may not be recorded due to the fare system. 
For example, bus companies that adopt flat fare systems only record either 
the boarding or alighting bus stop since there is no need for passengers 
to tap in and out. Also, in subways where ticketing gates at stations are 
common among lines, information on the routes taken by travellers may 
not be recorded as will be discussed more in Chapter 4. In summary, 
though some of these missing information constraints can be overcome, 
in many cases more analysis processes are often required before the data 
deliver some useful information. 

4. CATEGORIZATION OF POTENTIAL ANALYSIS USING  
 SMART CARD DATA

Despite all these challenges, when properly analysed, the smart card 
data can be a very powerful tool, for service management as shown in 
the contributions in this book. In their review on the potential for smart 
card data Pelletier et al. (2011) noted that smart card data can be used for 
strategic-level, tactic-level and long-term planning which they define as:

Strategic-level studies: Long-term planning. An understanding of 
tendency of passengers’ behaviour for long-term planning such as 
demand forecasting and marketing. An example of the analysis from 
this level is classification of travellers.

Tactical-level studies: Service adjustments and network development. 
Determine patterns in travel behaviour to adjust service frequency and 
route. An example of the analysis from this level is transfer journey.

Operational-level studies: Ridership statistics and performance 
indicators. An understanding of detail in passengers’ behaviour to 
measure the performance indicator. An example of the analysis from 
this level is schedule adherence.

One might further extend this classification as in Table 3. 
 If smart card data are aggregated, one can get knowledge and create 
graphs to illustrate details of travellers’ demand for strategic planning 
as shown in Chapter 9 or in various literature such as Jang (2010) with 
data from Seoul. Without smart card data these details are gained from 
boarding and alighting count surveys with great effort. Moreover, as 
mentioned before, one of the advantages of the use of smart card data 
is that it is possible to track individual behaviour. Therefore, from the 
analysis of the individual demand data, one can infer popular transfer 



8 Public Transport Planning with Smart Card Data

points, which is essential information for providing transfer facilities or 
even for long-term bus network planning, (Jang 2010). Furthermore, if one 
analyses individual time series data, it is possible to capture the day-to-day 
variation of travellers’ demand or their chosen route (set). It is suggested 
that one contribution of this is for better understanding of network 
reliability. Although many advanced network models have been proposed 
to deal with demand uncertainty, most of these assume that the demand or 
route choice probability follow a certain (simple) probabilistic distribution 
due to difficulties in obtaining good panel data. Instead, with smart card 
data it is possible to detect such distributions and/or to distinguish traveller 
groups according to their demand variation and route choice preferences. 
 As noted above and discussed in Chapters 8 and 10 in detail, with 
smart card data it is also possible to extract supply side data, such as the 
dwell time distribution at a bus stop. Therefore, it becomes possible to 
analyse mechanisms of “bus bunching” in detail. Most bus bunching 

Table 3. Possible analysis using smart card data

Extracted Data/ 
Level

Space 
Dimension

Level of 
Analysis Examples for Use by Operators

Demand, 
aggregated

Stop

Strategic Directly for service planning.Line

Network

Demand, 
individual

cross-sectional 
data

Route

Tactical

Design services so that it allows for choice flexibility (“hyper-
paths”).

OD patterns Minimize transfers and journey times, distribution by time of day.

Trip chains, 
Journeys1 Where to offer transfer information and waiting facilities.

Demand, 
individual panel 
data (card ID 
could be tracked 
over time) 

Route

Tactical

Estimation of demand variation over time.

OD patterns

Allows distinguishing “white noise” from explainable demand 
variation for capacity planning. 

Prediction of possible consequences of service disruption and 
infrastructure investments.

Trip chains, 
Journeys Strategic Service adjustments to user travel needs. 

Supply2

Stop

Operational

Evaluation criteria: Regularity, waiting time. 

Route Evaluation criteria: km operated, schedule adherence, “bunching”. 

Network As for routes, plus, e.g., knock-on effects of delays between routes.

Notes:
 1 Need alighting data, in some systems not available, might be inferable, see Chapter 2.
 2 In some systems such data can be directly extracted from smart card data, in others, like 

London, a separate data system (ibus) provides this data (see Chapter 8 where Singapore 
bus departure times are estimated from smart cards).
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studies focus on methods reducing its effect, but, to our knowledge, there 
are only few studies aiming to explain the causes of bus bunching with 
practical data so far an exception is Arrigada et al. (2015). With smart card 
data, it becomes possible to estimate the number of boarding passengers so 
that one can analyse the relationship between the demand and the supply 
service reliability.

5. BOOK OVERVIEW, WHAT IS MISSING AND CONCLUSION

The idea for this book was initiated following presentations given during 
the 1st International Workshop on Utilizing Transit Smart Card Data for 
Service Planning. This event was held in Gifu city, Japan on 2nd-3rd July, 
2014. The objectives of this workshop were;

 1. to create a network of researchers analyzing smart card data for further 
continuous exchange,

 2. to exchange experience on how public transport smart card data can 
be best analysed with the final goal to establish some “best practice” 
guidelines,

 3. to better understand that how far the data have been already utilized in 
practice, and

 4. to include public transport operators in the ongoing (academic) 
discussion to better understand how they see the need and potential 
for smart card data analysis.

The workshop was attended by 45 participants from all over the world 
and included 23 presentations related to smart card data analysis. At the 
workshop, the participants agreed that the importance and potentials of 
smart card data deserve a book publication on how to use smart card data 
for public transport planning and evaluation. 
 The book is split into three sections. The first section aims to give 
an overview on estimating the different behavioural dimensions that 
can be analysed with smart card data. Firstly, Hickman discusses the 
various approaches to get transit origin-destination matrices from smart 
card data, considering that the smart card records often do not include 
both boarding and alighting record. Chapter 3 by Ali and Lee thereby 
discusses approaches to further infer activity types of passengers. Chapter 
4 by Raveau concludes Part 1 by discussing challenges and possibilities to 
estimate route choice of passengers from smart card data. Taken together, if 
ODs, activities and routes of passengers can be estimated, then the analyst 
has a fairly complete overview on the travel patterns of passengers in the 
network and further indices such as network travel time can be extracted.
 Part 2 discusses further analyses possibilities if smart card data are 
combined with other data sources. Chapter 5 by Kusakabe et al. discusses 
how smart card data could be fused with personal trip data, one of the 
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challenges discussed afore. This is in fact also the bases for activity 
estimation of passengers, so that there is some overlap to Chapter 3. 
 Chapters 6 and 7 both offer a different perspective on the usage of 
smart card data in combination with survey data. For both the chapters the 
key is that the smart card usage and the survey response can be linked. In 
Chapter 6 by Brakewood and Watkins this is the key to estimate changes 
in the transit usage after installing real-time information. In Chapter 7 by 
Nakamura et al. sensitivities to the transit usage in response to a change in 
the loyalty-point scheme are analysed through a stated preference survey.
 Chapter 8 by Fourie et al. combines smart card data with transit feed 
and other data to use these as input for activity based simulation. It further 
assesses the supply characteristics from smart card data and provides a 
powerful example on how smart card data can be used for a large-scale 
citywide simulation of the public transportation network. The chapter can 
hence be seen as a transition to Part 3 of the book which discusses how 
smart card data can be used to evaluate the transport network quality.
 Chapters 9 and 10 directly focus on evaluation measures. The chapter 
by Munizaga et al. particularly discusses service indicators of interest for 
citywide transport planning. These are, for example, fairness in travel time 
distribution to the city centre from different parts of the city. Trepanier 
and Morency instead focus on evaluation measures of interest directly for 
service operators, such as service reliability, distance operated but also fare 
evasion. 
 Chapters 11 and 12 both discuss specific applications, though of 
very different kind. The chapter by van Oort et al. discusses ridership 
predictions in The Hague considering demand elasticity and potential 
changes in the service characteristics. Ishigami et al. discuss in Chapter 
12 a basic application of smart card data where ridership information 
obtained from smart card data is used in combination with probe car data 
to assess the need to improve the environment of specific bus stops. Finally, 
Wilson and Hemily conclude this book in Chapter 13 by broadly looking at 
automatic data collection systems and pointing out further research areas.
 The authors want to conclude this introduction by stressing that this 
book clearly does not offer a complete overview of all the existing smart 
card data research and some areas are missing. An important area that 
is not sufficiently covered in this book is discussions related to “within 
dynamics” as well as “day-to-day dynamics”. To give an example of the 
former, smart card data can be used to discuss the network demand 
dynamics following an incident on one of the lines. An example for 
the latter might be Kurauchi et al. (2014) who discuss variation in the 
bus line choice of commuters with London Oyster data. Thus, these are 
some examples where further research is needed. In conclusion, since 
the discussion paper of Bagchi and White (2005) titled “The potential of 
public transport smart card data” some of these potentials have indeed 
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been realized by now and the field has significantly advanced. However, 
to completely overcome some of the challenges that come with smart card 
data and to use their full potential will need further efforts. It is hoped that 
this book provides some overview of the state-of-the-art and will motivate 
scholars as well as practitioners to further advance the field. 
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A B S T R A C T
 Smart card transactions represent a passively collected source of
 information on passenger travel. With geographic coordinates and time
 stamps for these transactions, it is possible to infer the passenger’s origin
 and destination of a journey. In cases where only one transaction takes
place at the origin stop during a journey or trip leg (a so-called “tap-
 on”), an alighting location must be inferred. This chapter reviews the
 common methods and assumptions guiding inference of destinations.
 To supplement this review, it considers methods that convert the origins
and destinations from smart card transactions into estimates of origin-
 destination flows (O-D matrices). Such estimates may be complicated
 by the interpretation of the smart card data, particularly with respect
 to activities that might occur at transfer locations. Finally, this chapter
 explores other methods employed to look at patterns in O-D journeys
 and in passenger tours throughout a day. Several avenues for continuing
research in these areas are highlighted.

1. INTRODUCTION 

Many cities and regions around the world have adopted smart card 
technology for fare payment, providing financial benefits to the public 
transport operator and convenience to the passenger. The smart card 
transactions are electronically recorded, commonly providing data about 
the time of transaction, identity of the card (e.g., a serial number and the 
card type), the fare charged and location of the card reader; e.g., at a rail 
or bus station, or on board a bus or light rail vehicle. In many cases, other 
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data might be collected, such as a vehicle identifier, the route number, the 
travel direction and whether the transaction was an originating trip leg 
or a transfer from an earlier trip leg. For large transit networks, a single 
day’s operation may yield hundreds of thousands or millions of smart card 
transactions.
 While these data are primarily collected to manage fare collection, 
the availability of these data is certainly very attractive to public transport 
planners: the data are passively collected, without requiring more 
expenditure, and in many cases represents a large or nearly complete 
sample of journeys or trip legs made by public transport.1 Historically, 
ridership data were often collected manually, infrequently, at a huge 
cost and of varying quality. Hence, the change from a relatively “data-
poor” environment to a very “data-rich” environment creates many new 
opportunities to analyse transit ridership patterns and to improve public 
transport service planning (Bagchi and White 2005; Pelletier et al. 2011). 
Perhaps understandably, the data come with errors, inconsistencies and 
missing values that are in part unique to smart card data, but which can be 
managed through various techniques (Utsunomiya et al. 2006; Zhao et al. 
2007; Robinson et al. 2014; Yang et al. 2015).
 This chapter specifically addresses how to find transit passenger 
origins and destinations, as well as possible journey patterns, in one or 
more days of smart card transactions. Trip legs, a complete journey, the 
combination of journeys in a tour and related features of repeated journeys 
represent very practical measures of transit ridership. These data can offer 
a useful snapshot of individual passenger (disaggregated) travel patterns, 
may show changes in travel patterns over time, can show changes in 
demand in response to service or fare changes or changes in exogenous 
variables and may help planners to forecast future changes in ridership 
and passenger travel patterns for changes in service.
 While data from smart cards can help to show passenger travel, the 
primary function of the smart card is to pay a fare. Hence, the design of 
a smart card system is to facilitate fare payment using local fare policies 
and structures. Conversely, the smart card system and its data usually 
do not directly serve the data needs of transit planners. This chapter 
explores the features common to smart card data and possible methods 
of improving their use to describe passenger origins, destinations, time of 
travel and travel patterns. Section 2 describes the basic features of smart 
card data that assist with its interpretation of passenger trip legs and 
journeys. Subsequently, Section 3 includes a formal review and discussion 
of destination inference and its assumptions and violations. Section 4 
highlights work in origin-destination (O-D) matrix estimation and methods 

 1  The word journey describes the movement of a person from their origin to their destination. 
Within a journey, a passenger will have one or more trip legs: each trip leg makes up the 
passenger movement associated with a single vehicle. Thus, a transfer to a second vehicle 
begins a second trip leg.
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to infer routes, transfers and intermediate activities. Finally, Section 5 
discusses recent data mining and analytic methods to explore passenger 
trip purpose as well as journey and tour patterns. Brief comments on future 
areas of research are given in Section 6.

2. GENERAL PRINCIPLES

The use of a smart card involves tapping, swiping or waving the card on or 
over a reader either at the stop/station or on boarding the vehicle. A flat fare 
policy and some zonal fare policies only require that a passenger taps once, 
either before boarding at a station, or while boarding the vehicle. In these 
cases, it records only a single transaction (a “tap-on”). More complicated 
fare policies based on distance or zones usually require that the passengers 
tap-on and tap-off with the smart card.
 Thus, interpretation of a tap-on and/or tap-off transaction depends in 
part on the fare policies and transfer policies within the transit network. 
In the simplest case, a single tap-on or a joint tap-on and tap-off indicate a 
single trip leg. In “closed” transit networks where no tap is necessary at an 
interchange (e.g., in a rail network), a single tap-on is all that is available to 
interpret the full passenger journey. In “open” networks, passengers must 
tap-on for each trip leg with a separate transaction record for each trip leg 
in a journey.
 To understand the trajectory of a passenger, it is often useful to match 
the time and location of the passenger tap with the time and location of a 
vehicle. This matching might be done with some additional processing of 
automatic vehicle location (AVL) data, which records the location and time-
stamp of vehicle movements at stops and along a given route (e.g., Barry  
et al. 2002; Zhao 2004; Zhao et al. 2007; among many others). However, this 
matching also requires a common time and spatial reference between the 
smart card and AVL systems. In the absence of AVL data, explicit matching 
of passenger movements to scheduled bus and train movements might be 
difficult. A de facto schedule data format, such as Google’s General Transit 
Feed Specification (GTFS 2015), might be used. However, if schedule 
adherence is low or headway variability is high matching of a vehicle 
location and time to a passenger’s tap requires extra effort.
 Some common assumptions are often implicit in smart card analysis. 
First, a smart card ID is usually presumed to represent a single passenger 
(“nontransferable”), allowing interpretation of smart card transactions as 
the movements of one passenger. However, if there is sharing of the card, 
the movements cannot be easily reconciled to a single person. Second, the 
fare payment and transfer policies may themselves influence passenger 
behaviour. Examples of policies that could alter behaviour include transfer 
discounts, free trips after a maximum daily fare or maximum daily number 
of journeys, free trips after a certain daily (weekly, monthly) maximum, or 
some daily (weekly, monthly) maximum fare payment. In these situations, 
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passengers might be willing to game the system in order to achieve fare 
savings. This, in turn, may lead to differing interpretation of passenger 
behaviour, if that behaviour is strongly affected by the fare policies.

3. INFERENCE OF DESTINATIONS

The tap-on of a smart card is usually sufficient to identify the origin and 
the starting time of the trip leg. If the destination of a trip leg (alighting 
location)2 and time of arrival is desired, one needs either (1) an additional 
tap-off from the smart card, or (2) a means to infer this destination. 
Due to the prevalence of single tap-on systems, many researchers have 
investigated the problem of inferring destinations.

3.1 Tour (“Trip Chain”) Assumptions

The most common technique of inferring the destination and time of 
arrival uses the notion that a “tour” or “trip chain”, describing the chain 
of trip legs that a person will make within a single day. The chain assumes 
that the destination of one trip leg is proximate to the origin of the next trip 
leg and that the destination of the last trip leg in the chain is proximate 
to the origin of the first trip leg. The chaining assumption also infers that 
no journey during the tour is done by a different (non-walking) mode. 
Logically, a tour requires that the person will travel at least two trip legs.
 An example for trip chain is shown in Figure 1. A passenger leaves 
home for the first destination and as a part of that journey it is necessary 
for him/her to make a transfer. Transactions (tap-ons) are recorded when 
boarding at the origin and when boarding at the transfer; however, the 
locations of alighting on the first and second trip legs are not known. The 
passenger then makes a second journey and third journey, to return to the 
tour origin. As noted in the figure, the smart card transactions give the 
origins and time of departure of each trip leg.
 The problem, then, is to infer the transfer or destination locations. 
As one technique, one may choose the closest stop on the previous route, 
nearest to the next transaction. In Figure 1, the alighting point on the 
first bus might be inferred as the stop on that route nearest to the second 
transaction. Similarly, the alighting point from the second bus could be 
inferred as the stop on the second route nearest to the third transaction 
site. If the passenger’s alighting time is also desired, a common approach 
is to estimate the time the bus arrives at that location; this time could be 
determined either from AVL records or from the scheduled time on that 
bus route.

 2 In most literature, this is called a “destination” and the process “destination inference”. 
However, in the scope of this chapter, what is meant is an “alighting location”, as the 
passenger may only be making a transfer. In keeping with this literature, it uses the word 
“destination”, but with this caveat. 
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Common assumptions needed within the trip chaining model include:

 1. The destination of the last trip leg in a tour is identical to the origin of 
the first trip leg in the tour.

 2. Passengers will generally take the most direct walking paths between 
services, as measured by time, by distance, or some generalized time or 
cost.

 3. Passengers will take the next service available after arriving at a 
station/stop.

One may use assumptions 1-3 to infer the most likely stop at the end of a 
trip leg and to compute the time spent transferring between two services. 
If there is no time-consuming activity or long walk required during the 
interchange, the assumption is that the passenger will continue their 
journey directly by taking the first subsequent boarding opportunity.

3.2  Inference Methods

Most methods to infer destinations build from the simple algorithm 
suggested before. For each trip leg where the alighting location is 
unknown, infer the alighting location as the nearest stop on the route 
that is closest, in distance, to the next transaction. If there is no further 
transaction for the day, infer the alighting location as the stop on the 
route that is closest to the first transaction of the trip chain. Generally, one 
might assume certain maximum distances might apply, to avoid violating 
assumptions 1 and 2 above and to identify if the trip chain is interrupted 
by longer, non-walking trips. The algorithm fails to produce an alighting 
stop if these maximum distances are exceeded, or if the passenger only has 
a single trip leg or single journey on the given day.

Bus

Walk

Transaction

Bus Stop

2nd

Destination

1st

Destination

Transfer
Home

Fig. 1. Trip leg and journey chaining model
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 As an example, Barry et al. (2002) used this algorithm to infer 
destinations in the New York City subway. To certify the trip chain 
assumption, they employed a sample of 100 passengers who made 
only 2 journeys and 150 passengers who made chains of 3 or more 
journeys in a single day. In both samples, 90% of destinations could be 
successfully inferred. Then, using the subway fare card data of a single 
day, destinations could be successfully inferred for 83% of subway fare 
card transactions, with the lower fraction attributed to fare card errors 
or to those cards observed for only a single journey. The O-D patterns of 
fare card users were then expanded to include all subway passengers 
(including the 22% without fare cards), with the assumption that non-
fare card passengers share the same O-D patterns with fare card users. 
Station-specific boarding and alighting counts and passenger counts across 
selected cordons were used to show the validity of O-D flows.
 Two improvements to this destination inference algorithm were 
suggested by Trépanier et al. (2007). First, in cases where multiple days 
of smart card data are available, the last alighting location on a given 
day is given as (1) the initial boarding location of the tour, if the route is 
identical to the first route taken; or, (2) the initial boarding location of the 
first journey on the subsequent day. Second, for those trip legs where an 
alighting location cannot be inferred otherwise, the destination might be 
inferred as an alighting point for the same passenger, if he/she historically 
has used the same route and boarding stop. With these improvements, 
about 66% of alighting locations were successfully inferred, taking into 
account erroneous smart card data (21%) and trip legs with no successful 
inference (13%). Rates of inference were higher for more heavily used 
routes, for frequent travellers and for the morning peak period, when 
compared with infrequent travellers or travel in the off-peak, late evening 
and weekend periods. These two improvements were enhanced by the 
work of Ma and Wang (2014), who developed a Bayesian decision tree to 
classify historical origins and destinations. This decision tree then creates 
other probable inferences for a trip leg destination when other trip-
chaining criteria are not satisfied.
 For a multi-modal system, Zhao (2004) and Zhao et al. (2007) added 
an additional rule to the basic algorithm: the symmetry in routes in a 
daily tour (e.g., mirrored rail-rail or rail-bus route sequences) could infer 
alighting locations, if these were not otherwise identified. For a week 
of fare card data, about 71% of alighting locations could be successfully 
inferred. Farzin (2008) and Wang et al. (2011) used a similar approach to 
perform destination inference.
 A different passenger aim to infer alighting locations in bus-to-bus 
transfers was introduced by Munizaga and Palma (2012). Their approach 
minimizes the total time, defined as the time onboard plus time spent 
walking from an alighting location to the next boarding site, to infer the 
alighting stop. These objectives have an advantage of finding locations that 
minimise the passenger transfer time. 
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 The common assumptions for destination inference were tested 
empirically using the data from some cities that have tag-on, tag-off data. 
Notably, Alsger et al. (2015) used data from Brisbane, Australia to explore 
the largest walking distance, the greatest transfer time and the destination 
for the last journey of the day. First, they observed that, for transfer time of 
up to 90 minutes, the distance from an alighting stop to the next boarding 
stop rarely exceeds 800 m. They then concluded that 800 m is a reasonable 
maximum for identifying potential transfers. They also observed that 
transfer walking distances are relatively short, with about 80% of walk 
time being less than 5 minutes and over 90% of walking time being less 
than 10 minutes. Second, they note that the total number of journeys with 
an inferred transfer ranges from 15% to 20% of journeys, as the assumed 
transfer time threshold rises from 15 to 45 minutes. Only a very slight 
increase in the percentage of journeys with a transfer occurs when the 
allowable transfer time value is increased up to 90 minutes. The conclusion, 
supplemented by statistical evaluation of matrix similarity, is that the 
origin-destination matrix is not affected significantly by the assumed 
transfer time. Finally, they observed that 82% of tours returned to the same 
stop at the end of the day, while 90% were within 400 m of their tour origin 
and 95% were within 800 m of their tour origin from the same day.
 In a separate study, He et al. (2015) investigated destination inference 
quality, using tag-on, tag-off data from Brisbane as the ground truth. 
Their method, based on Trépanier et al. (2007), inferred the correct 
destination for 66% of trip legs. However, their analysis showed that, 
for a given distance threshold, there are a number of potential stops that 
might serve as reasonable destinations (e.g., among a high density of stops 
in the central business district). As a result, correct destinations were 
identified, if allowing all stops within a given distance, rather than using 
the minimum-distance stop. For example, by including possible “near 
misses” at 400 m, successful inference of the true alighting stop improves 
to 79%. Improvements in inference by allowing “near misses” are largest 
for trip legs on weekdays as compared to weekends and for peak periods 
(5-8 am, 4-7 pm weekdays) as compared to off-peak periods. Nonetheless, 
the accuracy of the destination inference is relatively insensitive to the real 
value of the distance threshold for “near misses”.

3.3 Transfer vs. Activity Inference

One challenge in inferring journey destinations is that the passenger 
may take part in short-duration, location-specific activities that are not 
easily discriminated from a transfer, especially if the transfer policies are 
generous. For example, if the fare policy allows transfers up to 60 minutes, 
passengers may conduct a short activity and return to their origin, but 
this is recorded as a transfer. Hence, differentiating transfers from a 
location-specific activity is not usually revealed in the smart card data. 
Some activities might be merely incidental to the transfer (e.g., buying a 
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newspaper or a beverage), while in other cases, a location-specific activity 
of the passenger (e.g., shopping, a meeting with a friend) occurs. Separating 
transfers from true location-specific activities is important in capturing 
true passenger origins and destinations.
 Initial research used a simple time threshold to distinguish transfers 
from activities. Hofmann and O’Mahoney (2005) used a 90 minute interval, 
while Bagchi and White (2005) used a 30 minute interval, between separate 
boarding transactions (from tap-on to tap-on). Both the teams suggested 
that this interval be conditioned on the size of the city, with larger cities 
allowing greater time between boardings. In another investigation, Barry et 
al. (2009), used a 18 minute maximum gap from alighting to next boarding 
to infer a transfer, while Munizaga and Palma (2012) used a 30 minute gap. 
Jang (2010) showed that transfer times were less than 10 minutes for 80% of 
journeys involving a transfer in Seoul.
 A proposal was given by Chu and Chapleau (2008) and Chu (2010) for a 
more rigorous accounting of the time between alighting and a subsequent 
boarding. In their study, they calculated the time of alighting and added 
the estimated walk time to reach the transfer stop, with a 5 minute buffer 
added for any uncertainty in the connection. If the passenger is observed, 
to take the next available vehicle on the connecting route, it infers a 
transfer; if not, the passenger is inferred to have conducted an intermediate 
activity. This more careful consideration of the timing of transfers results 
in a decrease in the estimate of multi-leg journeys (almost 40% in this 
case), compared with simply using a maximum transfer distance to find 
transfers. In Nassir et al. (2011), similar rigorous accounting was used 
to infer destinations and to identify incidental and destination-specific 
activities.
 To account for incidental activities during a transfer, Seaborn et al. 
(2009) consider developing separate thresholds to find maximum possible 
time for subway-to-bus, bus-to-subway and bus-to-bus transfers. Notably, 
their analysis suggests that the nearest transfer is not always the one taken 
if the incidental activity takes a short period or involves a longer walk. A 
systematic study of these transfers in London resulted in recommendations 
for thresholds of: (1) 15-25 minutes for subway-to-bus transfers (subway 
station tap-off to bus tap-on); (2) 30-50 minutes for bus-to-subway transfers 
(tap-on upon bus boarding to tap-on at a station); and (3) 40-60 minutes for 
bus-to-bus transfers (tap-on upon one bus to tap-on upon the next bus).
 Two fairly intuitive criteria described in Devillaine et al. (2012) work in 
conjunction with a 30 minute transfer time threshold: (1) the person exits 
and then re-enters a rail system; or, (2) the person travels again on the same 
route in the bus network. In these cases, intuition suggests an activity was 
conducted, regardless of the duration.
 A major study presented by Gordon (2012) and Gordon et al. (2013) 
suggests a comprehensive set of rules to differentiate transfers from short 
activities, using smart card data from London. It assumes a transfer, unless 
one of the following is true:
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 • The trip leg is the last one of the day.

 • The inferred alighting stop is more than 750 m from the next boarding 
stop.

 • The passenger boards the same route from which they most recently 
alighted.

 • The resulting journey destination is less than 400 m from the origin of 
journey.

 • The transfer time exceeds the maximum time, including the walking 
time (of at least 5 minutes) to the next boarding stop, plus the minimum 
of a 45 minute waiting time or the time of the next scheduled arrival of 
a bus at the boarding stop.

 • The circuity of the trip, measured by the real distance travelled divided 
by the straight-line distance, exceeds some threshold (e.g., 1.7).

   The use of these criteria in a London Oyster card case study resulted 
in 22% of connections being classified as transfers, 69% classified as 
activities and 9% as unknown. Such a characterization of activities 
results in a set of passenger origins and destinations.

  Nassir et al. (2015) build upon the work of Gordon et al. (2013) to 
evaluate several criteria to infer a transfer or an activity. It concludes a 
transfer unless:

 • The passenger boards the same route from which they most recently 
alighted.

 • The resulting journey destination is less than 400 m from the journey 
origin.

 • The transfer time (gap) exceeds a minimum time (e.g., 20 minutes).

 • The ratio of the gap to the total travel time exceeds some ratio (e.g., 0.4), 
suggesting that the intervening time consumed a substantial fraction of 
the total travel time.

 • The circuity of the trip, measured by the real distance travelled divided 
by the straight-line distance, exceeds some threshold (e.g., 1.7).

 • The difference between the observed travel time and the least travel 
time (so-called “off-optimality”) for the origin-destination pair at the 
given time of day exceeds some minimum time (e.g., 20 minutes).

 • The ratio of the off-optimality to the total travel time exceeds some 
threshold (e.g., 0.5).

These criteria are developed and empirically calibrated by comparing 
transfers to and from the same route, which are interpreted as a result 
of intervening activities, with transfers among different routes. These 
differences are plotted in the space of gaps, travel times and off-optimality, 
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to derive the specific values used in a case study of Brisbane. Their results 
suggest that, among almost 2 million sequences from March 2013 with two 
or more trip legs separated by less than 60 minutes, about 414 thousand 
(21%) might be inferred as including a location-specific activity.

4. O-D MATRIX METHODS

A rather simple interpretation of the origins and destinations (O-Ds) 
emerging from smart card data is that the data can simply be fed directly 
into an origin-destination matrix (Buneman 1984). Using a given seed 
matrix, or the smart card data itself as a seed matrix, common matrix 
expansion methods (iterative proportional fitting, the Furness method, 
maximum likelihood estimation, etc.) might be exploited to estimate the 
true O-D matrix (Cui 2006, Lianfu et al. 2007; Park et al. 2008; Li et al. 2011; 
Zhao 2004; Zhao et al. 2007). In some cases, other information sources can 
supplement these estimates; for example, Frumin (2010) uses estimates of 
train loads from weight sensors to help in the passenger assignment and 
O-D estimates on a rail line. Because of the multitude of available paths, 
Gordon et al. (2013) use expansion methods based on individual O-D paths, 
rather than the aggregate O-D flows.
 There are many considerations, however, that may affect how useful 
such a matrix might be, for the purpose of estimating the true origin-
destination flows in the public transport system (Gordillo 2006; Chan 2007). 
Those challenges include:

The ratio of passenger journeys using smart cards, as compared to 
all passenger journeys. In some systems, the percentage of passengers 
using the smart card could be high (e.g., 85-90%), representing a very 
large majority of trips. However, one must be careful even at these high 
percentages for possible differences in travel behaviour among smart card 
users and non-users. If there are major differences in the time of travel, the 
origin and destination locations, the types of daily tours, the frequency of 
travel, fare evasion, or other travel behaviour, simple factoring of the smart 
card O-D flows might be biased and misleading (Gordillo 2006; Munizaga 
and Palma 2012).

Self-selection bias among those who use the smart card. As one example, 
one might expect that passengers who use the public transport system 
often, or who otherwise might not pay fares by other means (e.g., cash, 
weekly or monthly passes, or discounts over cash) might be more likely 
to use a smart card. In this case, this population may have different 
travel characteristics than more infrequent users or pass-holders. As a 
second example, the smart card might target certain groups: primary and 
secondary school students, employees of certain businesses or government, 
pensioners/retirees, university students and staff, etc. In these cases, one 
expects there might be clear differences in the trip-making behaviour of 
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these groups, compared with the universe of public transit users (Lee and 
Hickman 2011, 2013, 2014).

Temporal and behavioural differences in the meaning of the tag-on. 
With time stamps at the tag-on, it is possible to generate time-dependent 
O-D matrices, under the assumption that passenger flows are reasonably 
uniform over the time period of interest (for example, see Ji (2011) and Ji  
et al. (2011) for estimating these time intervals). However, mixing of data 
from tag-on on-board with that off-board could be slightly inconsistent. 
A tag-on at a stop/station occurs when the passenger arrives, compared 
to a tag-on while boarding a vehicle. As a result, for time-dependent 
O-D matrices that combine both off-board and on-board transactions, it 
is important to consider a consistent point of time from the passengers’ 
perspective; e.g., one may use an inferred boarding time, for modes or 
services where the tap-on occurs at a stop/station.

Mapping O-D flows from stops to flows from traffic analysis zones. As 
most transportation planning models are based on the geographic unit of 
the Traffic Analysis Zone (TAZ), it is not easy to map O-D flows based on 
transit stops to the more general geography of TAZs. For example, stops 
might be located along roadways along the border of a TAZ, requiring a 
stop-to-TAZ (many-to-one) assignment. Instead of assigning all flow to the 
nearest TAZ, others have sought to capture the catchment areas of a stop 
more carefully. Most recently, the work of Tamblay et al. (2015) provides 
a fractional assignment of stops to TAZs using a logit model, built upon 
passenger walk access data from zonal data, land use data and a passenger 
access survey.

The challenge in the first two cases is to find information on the sources of 
bias and to use this information to expand the O-D flow estimates. In many 
cases, such additional information will rely on independent household 
travel surveys, passenger on-board surveys, or other observational studies 
that capture different passenger types. Ideally, existing household travel 
surveys and passenger on-board surveys would also collect information on 
the serial number (ID) of any smart card used, to validate public transport 
use for smart card users and to correct for these possible biases among non-
users (Chapleau et al. 2008; Munizaga et al. 2014; Kusakabe and Asakura 
2014).

5. JOURNEY AND TOUR PATTERN ANALYSIS

There is a growing literature which seeks to describe travel using not 
only time-dependent O-D matrices, but also to capture disaggregated 
travel patterns across many days. Patterns such as the frequency of travel, 
the timing of travel, journey origins and destinations and passenger trip 
chains could be used to classify passenger behaviours, to measure the 
variability of those behaviours and to give other meaningful aggregations 
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of passenger movements. This section examines common challenges in 
these data analyses.

5.1 Identification of Routes from Smart Card Data

One of the common difficulties is the inference of the passenger’s routes, 
one for each trip leg, when this information is not included among the 
data collected in the fare system. For example, when a tap-on occurs at a 
station, there could be some uncertainty about when the passenger actually 
boarded a vehicle and boarded which route. If the route and direction are 
not identified, these characteristics then might be inferred.
 Methods to infer route and direction commonly rely on observations 
of the passenger’s time of departure from the origin, time of arrival at the 
destination and the resulting travel time; also, methods based on travel 
distance and/or transfers could be employed (Reddy et al. 2009). These 
passenger-specific times are observed from the smart card data; what 
is commonly missing is the assignment to a specific route or scheduled 
vehicle run. One common method to achieve this assignment is to generate 
a set of feasible paths from the origin to the destination, using a time-
dependent shortest path algorithm. The time-dependent travel times in 
this algorithm track individual train or bus movements in the network and 
could be taken from the published timetable or available AVL data. Various 
methods could be employed to select the most likely combination of routes 
and vehicles for the passenger, given the passenger’s observed travel time 
characteristics.
 In this area, examples of research using a deterministic, rule-based 
method include Kusakabe et al. (2010); Asakura et al. (2012); Zhou and 
Xu (2012); Sun et al. (2012); Van der Hurk et al. (2015); Hong et al. (2015); 
and Sun and Schonfeld (2015). Extensions of these rule-based methods to 
examine passenger “strategies”, where passengers may make boarding 
decisions based on the timing of vehicle arrivals to the origin (so-called 
“hyperpaths”) are explored by Schmöcker et al. (2013) and Kurauchi et al. 
(2014).
 In other cases, probabilistic considerations may dominate. Notably, in 
a study from London’s underground network, Paul (2010) considered the 
means of estimating passenger routes and trains. Use of smart card data to 
estimate the travel time from one station to another was matched with the 
trajectory data of the trains. The path was inferred from the possible train 
trajectories and the probability distribution of passenger walking times, 
explicitly considering platform access and egress times and transfer times 
within each station. Paul’s work was extended to the Hong Kong MTR in 
the work by Zhu (2014). Alternately, advanced algorithms can simulate a 
passenger’s path-specific travel time and explore the resulting O-D travel 
time distributions, to infer the most likely path of the passenger. Bayesian 
frameworks such as Markov Chain Monte Carlo (MCMC) simulation 
(Lee and Sohn 2015) or Metropolis-Hastings sampling (Sun et al. 2015) are 
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data mining techniques that have been explored. In a different approach, 
the research by Fu et al. (2014) used Gaussian mixture models to explore 
passenger’s travel time distributions in London’s underground network, to 
find different routes used by passengers. For further discussion on route 
choice estimation with smart card data see Chapter 4 in this book.

5.2 Journey Pattern Analysis

There might be value in analysing similar travel patterns among groups of 
passengers, for the purpose of understanding existing and potential transit 
market segments and for generating possible information and service 
strategies for these markets. The use of smart card data for this task provides 
another level of disaggregation. This is an emerging area of research, using 
data mining and trajectory clustering techniques to illuminate important 
passenger behaviours.
 At a basic level, statistical methods for the analysis of passenger travel 
patterns include frequency analysis, ANOVA and related spatial and 
temporal correlations among journeys (e.g., Nishiuchi et al. 2013 among 
many others). Visually, the work of Tao et al. (2014a, 2014b) explores the 
illustration of mapped passenger O-D flows using a so-called “flow co-
map”. Such co-maps are extensions of existing passenger flow diagrams, 
but in this case aggregation of each journey in time and space and various 
conditions (e.g., direction of travel, use of a busway) could be employed to 
illustrate specific types of passenger flows during different times of the day.
 Using clustering methods, many researchers have sought to look at 
temporal and spatial travel patterns, usually by origin and destination and 
by time of the day. K-means clustering was used by Zhao et al. (2014) to 
identify the typical spatial and temporal travel patterns and to identify 
“anomalous” behaviour that does not easily fit existing clusters. Yuan 
et al. (2013) use Conditional Random Fields (CRF) to identify passenger 
journey chains from spatial, temporal and card transaction constraints. The 
goal in this work was to discover both passenger boarding and alighting 
locations as well as tour-based mobility and activity patterns. A Naïve 
Bayes classifier was used by Foell et al. (2013, 2015) to classify passenger 
trips based on the day of week, time of day and frequency of travel. An 
extension of this model to predict passenger boarding sites is described 
in Foell et al. (2014). Kieu et al. (2015) extended the traditional DBSCAN 
algorithm to consider the density of bus stops in the vicinity of a location 
to infer passenger travel patterns through tours. This algorithm takes as 
input the location and time stamps of journeys or tours and allows the user 
to specify various tolerances in space and time. From this information, the 
algorithm then clusters passenger journeys or tour patterns into common or 
shared patterns.
 A separate line of investigation has looked at identifying travel patterns 
of specific passenger market segments; this could be important in public 
transport marketing, information strategies and in determining passenger 
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response to service changes. K-means clustering was used by Agard et al. 
(2006) and Morency et al. (2007) to investigate the temporal and spatial 
variability of travellers who use various types of smart card. El Mahrsi et 
al. (2014) used K-means clustering to group passengers into types based 
on their temporal travel characteristics (hour-of-day and day-of-week). 
With a similar objective, Kieu et al. (2014) used DBSCAN to segment public 
transit passengers based on their day-to-day travel patterns, both in space 
and time. Similarly, Costa et al. (2015), compared three different machine 
learning techniques (decision trees using J48, Naïve Bayes and Top-K 
algorithm) to classify passenger travel patterns into four groups, based on 
the level of spatial and temporal regularity of their journey patterns. Spatial 
and temporal clustering of passenger travel patterns has also been explored 
in Lathia et al. (2010, 2013) using a dendrogram as a form of agglomerative 
hierarchical clustering. In a contrasting approach, Ma et al. (2013), used 
DBSCAN to cluster an individual traveller’s journeys, based on the spatial 
and temporal dimensions of their journeys and tours. These passenger-
specific clusters in turn are clustered with other travellers’ travel patterns 
using the K-means++ algorithm. The authors also explore the use of rough-
set theory to create a rule-based classifier from the K-means++ results. The 
rough-set theory-based classifier is used to identify similar journey clusters 
for passenger journeys with only a tap-on.

5.3 Activity Inference and Analysis

While the data from smart cards does not include any information on the 
activities conducted by passengers during their daily tours, some have 
explored extensions of the journey patterns, trip chains and land use data 
at journey destinations to infer possible passenger activities. As with 
journey pattern analysis, this allows planners to understand the existing 
and potential passenger markets and potential strategies to attract more 
passengers to public transit. Knowing the activity type (mandatory vs 
discretionary) also allows a deeper understanding of possible passenger 
responses to transit service changes.
 One direct form of analysis is to look at repeated destinations that 
passengers visit over time. As one example, the work of Chu and Chapleau 
(2008) was extended in Chu and Chapleau (2010) to identify trip “anchors”, 
representing frequently used stops in a small vicinity of a given destination 
(e.g., within a 500 m radius). These anchors might be associated with 
home, work or school locations, depending on the local land use at that 
destination. Extensions to model passenger activity patterns, using decision 
trees with the C4.5 algorithm, were also explored in this research.
 Other investigations have explored other travel patterns shown in the 
smart card data to derive trip purposes. Bouman et al. (2013, 2015) generate 
a set of rules to characterize passenger activity patterns using smart card 
data from the Netherlands. The critical data elements from the smart card 
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transactions are the duration of the activity and the sequence of the activity 
in the overall trip chain (or the start and end time of the activity).
 A major extension of this approach uses land use data at transit 
destinations and information on the smart card type to make further 
inferences about trip purpose. Devillaine et al. (2012), Lee et al. (2013), 
Lee and Hickman (2014) and Ali et al. (2015) each generates a set of rules 
to characterize the journey purpose (e.g., work, school, home, other), 
considering smart card transaction data that combines with GIS data 
on land use at destinations. The land use data is exploited to infer likely 
activities conducted near transit stops. The work of Munizaga et al. (2014) 
serves to validate these approaches, comparing the trip purpose inferred 
from the smart card with corresponding household survey data as well as 
other survey data.
 Others have considered integrating household travel survey data, 
which provides trip purpose information, with the smart card data. 
Chakirov and Erath (2012) investigate the types of activities that could 
be identified from smart card data, particularly examining rule-based 
methods to classify work activities. These rules are not as effective, 
however, when compared with methods that integrate household travel 
survey data. Specifically, with the household survey data, the researchers 
generated logit models to predict work activities from the duration, 
start time and site of the activity, using detailed land use data at journey 
destinations. By applying these logit models to the smart card data, a larger 
percentage of work trips could be successfully inferred than using the 
simple rules.
 Finally, Kuhlman (2015) uses smart card data to enrich local survey 
efforts to examine travel patterns and activities, comparing both journey-
based and tour-based pattern analysis to infer passenger activities at 
destinations. The results suggest considerable benefits of expanding 
travel survey data with smart card data, to infer trip purpose, particularly 
for work journeys but also for “other” trip purposes; shopping and 
educational purposes were less accurately predicted. In addition, a tour-
based approach, incorporating the full trip chain over the course of a day, 
has much better inference of trip purpose than a trip-based approach. This 
discussion is continued in Chapters 3 and 5.

6. AREAS FOR FUTURE RESEARCH

The use of smart card data to estimate passenger origin-destination 
flows, and associated extensions to tours, within-day travel and activities 
and travel patterns across days, represents a healthy area of research. 
The review in this chapter has illustrated a wide variety of research into 
methods of structured analysis of the smart card data and into applications 
for better transit planning.
 While one might consider this area fairly mature, there are some areas 
where the value of the smart card data could be further exploited for 
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similar applications. First, more effort is required to achieve integration 
of transit smart card data with household travel survey data and with 
passenger on-board survey data (Chapleau et al. 2008; Trépanier et 
al. 2009; Medina and Erath 2013; Munizaga et al. 2014; Kusakabe and 
Asakura 2014; Spurr et al. 2014; Kuhlman 2015). One might expect that 
future survey efforts might attempt to capture a passenger’s smart card 
identifier and their permission to use smart card transactions as part of 
newer survey methods. In this way, rather than relying on travel surveys 
alone to capture passengers’ travel patterns, panel data from smart cards 
could be used to monitor travel behaviour over longer periods of time, but 
importantly, the travel recorded by the smart cards could be connected 
to sociodemographic characteristics. Currently, there is no direct way of 
capturing this connection. Synthetic methods, where travel patterns from 
surveys are matched to specific fare card-revealed travel, may offer a close 
approximation to such direct integration.
 Second, while there are clear methods to generate O-D matrices from 
smart card data, there remain some obvious questions that have not yet 
been answered. As noted earlier, the research community lacks good 
methods to find possible sample- or self-selection bias in generating 
O-D matrices from smart cards. It also does not have a good idea how 
much O-D matrices vary over time, such as on a day-to-day basis. Such 
information would be useful, from a service planning perspective, to 
understand the extent to which demand varies and the extent to which 
that variance is a function of demographic variables, service variables and 
perhaps other exogenous variables. Improvements in demand modelling 
may occur if such sources of variability could be identified.
 Third, there are many opportunities to create a stronger connection 
between O-D estimates and their more practical use in travel demand 
modelling. The work of Tamblay et al. (2015) ties the smart card data to O-D 
estimates that could be directly connected to traditional traffic analysis 
zones (TAZs) used in strategic transport planning models. Also, Section 
5.1 describes recent efforts to identify journey patterns, activity patterns 
and inferences of trip purpose; this work could be more directly related to 
travel demand management, transit demand forecasting and transit service 
design.
 These are exciting times for researchers in these areas. Yet, at the risk of 
a gross generalization, there remains a pressing need to show the value of 
such analytic methods to improve the practice of service planning.
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A B S T R A C T
Household travel surveys contain, besides travel information, socio-
 demographic information which plays an important role in analyzing
 travel dynamics. Disadvantages of such surveys are though that these
 are costly to conduct, time-consuming and often do not cover more than
 2-3% of the population leading to possible biases and errors in reporting.
 On the other hand, smart card data provide real-time, accurate and
 detailed on board transactions records of each user, however, only
 cover a subset of all trips. Further, smart card data do not usually
 contain socio-demographic information and hence, one of the most
 important parameter “trip purpose or activity” is missing. This problem
 is of growing interest and several algorithms to infer the trip purpose
 are proposed. In this chapter, the discussion is on trip destination and
 purpose estimation methods and a 1-day Household Person Travel
 Diary Survey (HHPTD) is utilized to generate a framework for assigning
 trip purposes to trips. Activities studied are “home”, “work”, “school”,
 “academy” and “shopping”. Decision trees and rule-based models,
 namely, R-Tree and C50, are used to estimate the trip purpose. HHPTD
 is utilized to train the datasets and applied on the smart card dataset
 to calculate the probabilities of different activities. Activity duration,
 location and start time are the parameters which were analysed for
 developing the inference framework. The spatial context of this study
 is Seoul Metropolitan Area (SMA) with a focus on Seoul City. The smart
 card data analysed in this study dates back to June 11, 2012 and over 28
 million transactions were made during that day.
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1. SMART CARD USE IN TRIP DESTINATION AND ACTIVITY   
 ESTIMATION 

Earlier literature published on the use of smart cards in public transpor-
tation planning focused on the estimation of origin-destination (OD) 
matrices in entry-only systems where users only swipe their cards during 
boarding a transit station or vehicle. Barry et al. (2002) developed a method 
to estimate station to station OD matrices for New York Metro by assuming 
that a high percentage of users return to the destination station of their 
previous trip to start a new trip and by further assuming that a high 
percentage of users end their last trip of the day where they begin their first 
trip of the day. Zhao et al. (2007) carried out similar work and proposed 
a method to infer rail passenger trip OD matrices in the Chicago transit 
system and examined rail to bus transfers which were ignored in former 
studies. Farzin (2008) applied global positioning data (GPS traces) to find 
the location of buses for assigning origin zones and to develop automated 
bus OD matrices by integrating automatic vehicle location and fare 
collection system in Sao Paulo, Brazil. Munizaga and Palma (2012), achieved 
a success rate of 80% for alighting point estimation for a multimodal public 
transport OD matrix generation in Santiago. 
 Recent literature on utilizing smart cards is focused on analyzing travel 
behaviour and service planning of public transport systems. Morency  
et al. (2007) used the smart card data for measuring performance of transit 
network over a range of spatial and temporal resolutions. Performance 
measures studied were vehicle-kilometres, vehicle-hours, commercial 
speed, passenger-kilometres, passenger travel time and average trip length 
(see Chapter 9 for a summary and advances on this line of work). They also 
created run load profiles for transit lines and calculated occupancy level of 
vehicles. Trepanier et al. (2007) segregated users into different behavioural 
groups or clusters based on their regularity and daily patterns. Results 
proposed that data mining techniques help to identify and characterize 
market segments among the transit users.
 Using data from Seoul, Park et al. (2008) studied the reliability of smart 
card data and its potential to define user characteristics like bus runs by 
mode, user types, boarding time and travel time distribution for all transit 
modes. Jang (2010) examined travel time and transfer points for system 
improvement in Seoul City and thoroughly analysed transfer points over a 
wide range of trip patterns according to mode.
 Sun et al. (2012) recently carried out work in a Singapore context where 
the use of smart card data took place to extract passenger’s spacio-temporal 
density to illustrate train trajectories. The model also predicts the location 
of a certain train and the number of on board passengers. A further recent 
study using smart card data is by Arana et al. (2014) who looked into the 
impact of weather conditions on transit conditions.
 More closely to this study, recently, there has been a growing interest 
among researchers to use smart card data within an activity-based 
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perspective. Activity-based modelling (ABM) is not a new approach to 
travel demand analysis, it has been in practice since at least the last decade. 
This approach answers many behavioural policy measures which cannot 
be simply answered by traditional four-step modelling techniques. ABM 
views travel as a demand, a demand from the need to pursue “activities” 
in space and time. It employs time-use surveys for analysis or space-
time prism. Devillaine et al. (2012) developed rules based on travel diary 
surveys to detect activities of smart card users in Gatineau and Santiago. 
Purpose assignment criteria were designed to identify weekday activities 
along with a set of heuristic rules. They studied work, study, home and 
other activities. Kusakabe and Asakura (2014) developed a data fusion 
method of smart card data with person trip survey data and estimated 
the activity purpose with a success rate of 86.2% using the Naïve Bayes 
probabilistic model (see also Chapter 5 in this book). Lee and Hickman 
(2014) built a series of heuristic rules for trip purpose assignment by using 
cluster analysis by observing users’ spatial-temporal interactions over the 
weekdays. Activities were classified into different clusters according to first 
and last transactions observed during the day. Trips were associated with 
work, school or other activities. More recently, Yang et al. (2015) proposed a 
spatial temporal activity preference model by exploiting the data sets from 
social networking mobile applications based on locations. Development 
of a fusion framework, to combine the spatial and temporal activity 
preference model for activity preference inference and applied tensor 
factorization models. Nassir et al. (2015) proposed off-optimality concepts 
to improve the accuracy of short activity detection to estimate passengers’ 
true origins and destinations. Short or hidden activities which are often 
labelled as transfers were studied in detail based on estimation methods 
which include variables like alternative paths and routes, service headway, 
walk times and transfer points.

2. SMART CARD DATA STRUCTURE IN SEOUL

In 2004, Seoul Metropolitan Government introduced a new distance-
based fare collection system called “T-Money”, where users swipe their 
cards for both entering and disembarking the system; however they do 
not need to confirm the cards during transfers within the subway system. 
The system is fully integrated and allows up to 4 free transfers if the time 
span between previous trip segment’s alighting and next trip segment’s 
boarding is less than 30 minutes. “Integrated” further refers to users 
being able to transfer free of charge between different modes such as bus 
and train. Each time a transaction is made the smart card system records 
individual transaction information for entry and exit and creates trip-based 
records.
 The recorded information on smart cards (Table 1) reveals detailed 
information on a user’s complete day itinerary. Unique card ID, boarding 
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time, boarding station ID, alight time, alight station ID, transport method 
(subway, regional bus, circular bus, etc.), bus route ID, passenger type 
(adult, youth, children), total fare and total distance travelled are the 
attributes recorded in the smart card database for each singular trip 
segment pair. Therefore, it is necessary to distinguish between trip legs 
and trips as explained later in the method section. To date, over 100 million 
prepaid cards have been issued with 71 million affiliated cards in use and 
about 30 million transactions were made in greater SMA every day. The 
smart card penetration rate in SMA is 92% (2013) and is on constant rise 
(Figure 1). Therefore, the data can accurately generate the transit-demand 
due to availability over a large period.
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Fig. 1. Number of trips using smart card payment (Korea Smart Card Corporation)

The public transport system comprises 19 urban railway lines and more 
than 400 bus routes in greater SMA. Public transport accounts for about 
63% of daily trips in greater metropolitan area (Seoul Statistics, 20131).

 1 Composition of Daily Passenger Transportation. Could be accessed at: http://english.seoul.go.kr/ 

Table 1. Information stored in smart card database per transaction

Information Description

Card ID Card number for each smart card

Departure time Departure time

Type of mode Bus (local/main/feeder/metropolitan/circle bus), Metro

Number of transfers Number of transfers (from 0 to 4)

Type of user Youth (>12 & < 20y), Children (<12 y) or Adult (>20 y)

Boarding time Boarding time (year/month/day/hour/minute/second)

ID of boarding location Given number of boarding bus/metro stop

Alighting time Alighting time (year/month/day/hour/minute/second)

ID of alighting location Given number of alighting bus/metro stop

Number of passengers Number of passengers

Basic fare Starting (base) fare

Additional fare Additional fare with distance

Travel distance Distance from origin stop to destination stop

http://english.seoul.go.kr/
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3.  METHODOLOGY FOR TRIP DESTINATION ESTIMATION

3.1 Data Cleaning

The raw database consists of 18.83 million trip segment records (storage 
of each transaction as an independent OD trip). The total number of daily 
passengers is 6.6 million, each with 2.82 average transactions per day. 
The daily average number of trips per person is 2.11 and about 1.2 million 
users make only one trip per day (one transaction per card). For analysing 
activities, at least 2 trips are in need (or transactions). These users are 
regarded as non-frequent metro users and need to be discarded for activity 
analysis because they do not use the metro for the complete journey. For 
analysing activities, at least 2 transactions are needed to get information 
on duration of the activity. Therefore, the users with one transaction are 
trimmed off from the database. Users with more than 9 transactions can 
also be trimmed off since the less than 0.5% of the users and using them 
the in analysis will complicate the activity purpose imputation process. 
Listed are following assumptions (similar to Lee and Hickman, 2014) for 
data trimming:

 • The origin of the first trip is also the destination of the last trip of the 
day (activity type is “home”).

 • The trip destination is also the origin of the succeeding trip (search 
radius of 700 metres is fixed in this case study because of densely 
located transit stations in Seoul).

 • Transit users do not switch to other transport modes within their given 
sequence of daily transit trips.
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Another implication is the distance between consecutive boarding and 
alighting points (2nd assumption). If the trip boarding point of the current 
trip segment (or a trip) is far away from the alighting point of previous 
trip segment (or trip), then it indicates that the user has switched to an 
unidentified mode of transportation (bike, car share, walk, etc.) for his next 
trip. A threshold of maximum walking distance to be less than 1 km is set 
in this study. It is unusual that a user would walk more than 1 kilometre 
for his next trip boarding in such a connected transit (bus and subway) 
network with highly densely located stops. The data analysis indicates 
that around 62% of the users start their next trip from the same (subway) 
station where they had alighted in previous trip. Another 30% of the users 
start their next journey in proximity of 700 metres to the previous trip’s 
alighting location. The remaining 8% of the users start their next trip, 
on average, almost 6.5 km away from the previous trip alighting point 
indicating an unidentified mode shift (taxi, bicycle or car-pooling).

3.2 Trips and Trip Legs

A trip might be composed of several trip legs (here referred to as 
individual transaction) and/or different modes; therefore, it is mandatory to 
distinguish between trips and its legs (Figure 3). Data kept as an individual 
trip segment in the smart card database and the transfer points are 
distinguished according to the maximum allowable transfer time which is 
30 minutes for Seoul (Ali et al. 2015). A program is written in java language 
which reads individual smart card transactions and gives the output as a 
trip, after which an activity with, at this stage of the analysis, unknown 
purpose is performed. Other attributes included are activity start and end 
time, duration and location. The last transaction (alighting) of the day is 
then considered the home location if the first trip’s boarding and last trip’s 
alighting locations are not farther than 500 metres. 
 For each trip, if the time difference between current trip’s alighting (Di) 
and next trip’s boarding (Oi+1) is greater than 30 minutes, it is inferred as 
an activity, otherwise a transfer point. In the next section, R Tree and C50 



Chapter 3: Destination and Activity Estimation 43

algorithms are used to predict the trip purpose which is unknown at this 
stage.

4. TRIP PURPOSE IMPUTATION USING HOUSEHOLD  
 TRAVEL SURVEY

The Korean Transport Database (KTDB) conducted the 2010 HHPTD 
survey and the survey includes one-day trip information about each 
household. The data is composed of 217,444 households with 540,298 
persons surveyed. The average trip rate per person is 2.46 for private car 
users compared to 2.07 for public transport users, which is very similar to 
the smart card data (i.e., 2.11). For each household member, the variables 
recorded are: person unique ID, trip purpose, trip mode, departure time, 
arrival time, activity duration and sequence number. Activities recorded in 
the original survey includes “home”, “work”, “school”, “academy”, “work-
based trip”, “shopping”, “leisure” and “others” (Table 2). Work trips are 
defined as the trips made during the day for work purpose which could 
be both home-based and work-based. “Home-based trips” refer to the trips 
which are organized with home as either the origin or the destination of 
the trip. Similarly, work-based trips refer to the business trips made from 
workplaces which include business related travel. School trips are defined 
as the trips made during the day for educational purposes (schools) where 
academy trips (which are also reported in the Household Travel Survey) are 
the trips made during afternoon and evening periods for private tuitions. 
Shopping includes buying groceries in the market. 18 modes of transport 
are recorded in which “walk”, “private car”, “car pool”, “bus”, “subway”, 
“railway”, “taxi”, “motorcycle” and “bicycles” are the dominant ones. Based 
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on trip purpose, 96% of the trips are home-based while 4% of the trips are 
work-based trips. Out of those 96% home-based trips, 45.7% activities are 
“home”, 19.5% “work”, 11.9% “school”, 5.3% “academy”, 2.3% “shopping”, 
3.7% “leisure” and 6.1% “others”. Transit users are extracted from the data 
and trip characteristics of public transport users to develop a framework 
for trip purpose inference process. Figure 4 shows the cumulative density 
functions (CDF) of activity start time and activity duration for each activity, 
based on HHPTD. The CDFs will be used to identify activity types in the 
smart card database.

Table 2. Reported activities in household travel survey

Activity Type Percentage

Home 45.7%

Work 19.5%

School 11.9%

Academy 5.3%

Shopping 2.3%

Leisure 3.7%

Others 6.1%

Work-based travel 4%

4.1 Activity Start Time and Duration

Figure 4 shows the activity start time regimes for home, work, study 
(school and academy), shopping and others. The data interval is 30 minutes 
which helps to illustrate that majority of the work activities start between 
6:30 am and 9:30 am (work start time peak – red coluor). Approximately 
8% of the total activities during 8:00 – 8:30 am and 8:30 – 9:00 am are work 
activities. The work activity graph sharply peaks at 6:30 am in the morning 
and abruptly declines after 09:30 am. The work activities graph again rises 
during afternoon period indicating work-based trips and lunch break trips 
(less than 0.5% people returned home/travelled for lunch breaks in the 
survey). 
 For home returning trips, it is quite visible that home activities start 
gradually from the afternoon period indicating students returning to 
homes from schools and colleges. The graph peaks up in the evening 
strip (PM peak) corresponding to high school students returning from 
colleges/universities and workers returning from job places (6:00 pm is 
the earliest finish time in most Korean companies). The slope gradually 
decreases while still 12% of the total home-return trips are seen between 
9:00 – 10:00 pm which corresponds to the usual late night working habit in 
South Korea. Similarly, study trips start in the morning peak, i.e., schools, 
colleges and universities where academy trips start mostly in the evening 
period.
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Fig. 4. Activity start time regimes (HHPTD, Public transport users only)

Activity start time and duration are the parameters used to train the data 
sets in R packages. The training data sets are then used to predict the 
activity purposes. Based on the CDF, most of the work activities have 
about 650 minutes of duration with a standard deviation of 110 minutes. 
Similarly, the average duration for school, academy and shopping activities 
comes out to 5, 2 and 1 hour. 
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4.2 Trip Purpose Prediction

Restructuring of household person travel diary survey data and each 
activity represented by these attributes: person ID (household), activity start 
time, activity duration and activity location. Here, the activity purpose is 
already known and models are applied Tree and C50 models in this section 
to predict the unknown activities from the smart card data and calculate the 
misclassification error. 50% of the household data is used to train the model 
and the remaining 50% is used to calculate the misclassification error. Home 
activities from household results are not used for prediction purposes since 
it is assumed, as discussed in Section 3.1, that the origin of the first trip is 
destination of the last trip of the day. Activity types such as work, academy, 
use of shopping and others are used to calculate the probabilities of trip 
purpose based on activity start time, activity duration and location. 

4.2.1 Tree Classification

Tree classification algorithms2 written in R language are used to predict the 
activity purpose here. The basic decision tree models (or decision support 
tools) are either classification trees, applicable to binary response variables, 
or regression tree models, applicable to numeric response variables. 
The tree model assigns every record in a data set to a unique group and 
generated a predicted response for each group. The smart card data is 
designed as depicted in Table 3a and b, while data from the household 
travel diary survey also contain a similar structure plus the additional 
information of activity type.
 At the start, a distinction is made between 2 smart card types, i.e., 
adults (>20 years) and youth (<20 years). Dominating activity for adults is 
“work” and for children it is “school” and “academy”. 

Table 3a. Trip chain of a typical smart card user (1-person)

Smart Card ID Activity Start Time Activity Duration (Hours) Location (Sub 
District)

1120092190 08:22:13 9 1101054

1120092190 17:45:12 2 1101057

1120092190 21:20:31 Last transaction (alight) of the day: 
regarded as home 1101054

Table 3b. Activity chain from household travel survey (1-person)

Person ID Activity Start Activity Duration 
(Hours)

Location (Sub 
District) Activity Purpose

1212450001 08:40 9 1101071 Work

1212450001 18:30 1 1101057 Shopping

1212450001 20:00 Last activity 1101071 Home 

 2  https://cran.r-project.org/web/packages/tree/tree.pdf

https://cran.r-project.org/web/packages/tree/tree.pdf
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In the tree classification model, two predictors, namely, activity start 
time and duration are used. The overall predicted misclassification error 
comes out to 0.28 for the tree classification model which means that 28% 
of the activities were not estimated correctly. The main source of error is 
that there are many overlapping activities if the estimation is solely based 
on two parameters only (activity start and duration). Work, school and 
academic activities are estimated with a success rate of 81% because the 
start time and duration for these activity types follow regular patterns, 
whereas activity types such as shopping and others do not follow 
regular patterns and hence have many communalities accounting for 
misclassification. The test results are as shown in Table 4. 

4.2.2  C50 Algorithm

Decision tree as well as the rule-based model C503 are further used to 
calculate the probabilities of activities based on the given three factors: 
activity start time, duration and location. The C50 algorithm is widely 
used as a decision tree method in machine learning. The prediction power 
and efficiency of C50 (which is a modified form of C4.5) is greater than 
simple tree algorithm. C50 builds the decision trees based on concepts 
of information entropy. The training data is a set to already classified 
samples. Overall misclassification based on three parameters using C50 
comes out to 0.20, meaning 80% success rate for prediction. The third 
parameter is activity location which improves the overall prediction 
results, since choice of activity location depends upon the land-use 
information. 

5. RESULTS AND DISCUSSION

The results in Tables 4a and b shows the cross validation summary for 
the two algorithms used in this study. The overall misclassification error 
using the two variables as predictor (activity start time and duration) 
in R-Tree classification algorithm comes out to 0.28. Work and school 
activities have a stringent start times and most follow typical patterns 
in terms of start time and duration (9 hours – average work duration). 
HHPTD reports 4% of total trips to be work-based trips and these are not 
considered separate activities to minimize misclassification error. Further, 
the household survey data report that the majority of work-based trips are 
carried out not with public transport but by car or walk. As the prediction 
is solely based on duration and start time, there are many overlaps with 
activity types “shop” and “other”. 
 Similarly, the school activity is also misclassified up to 16% (among 
activity types “academy”, “shop” and “other”). The majority of the trips 
with purpose “academy” starts in the afternoon and evening time regime  
 
 3 https://cran.r-project.org/web/packages/C50/C50.pdf

https://cran.r-project.org/web/packages/C50/C50.pdf
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corresponding to a total prediction rate of 71% with 29% misclassified into 
activity types “shop” and “other” due to overlaps in duration and start 
time. Shopping activities do not follow any general trend in terms of start 
time and duration. The overall prediction rate increases by taking three 
variables into account with activity location being the third predictor. 
There would be a high possibility for the trip purpose being “shop” if the 
bus stop or metro station is at or near a shopping mall. Similarly, there 
would be a high possibility of the trip purpose to be leisure, if the location 
is at or near the sports complex or a park. In this study, the activities 
like “leisure” and work-based trips were not considered as this would 

Table 4a. Cross validation summary for training data using R-Tree

Predicted Group

Work School Academy Shop Others Total

Work
0.81 0 0 0.09 0.1 1

81% 0% 0% 9% 10% 100%

School
0 0.84 0.07 0.03 0.06 1

0% 84% 7% 3% 6% 100%

Academy
0 0.02 0.71 0.12 0.15 1

0% 2% 71% 12% 15% 100%

Shop
0.11 0.09 0.09 0.61 0.1 1

11% 9% 9% 61% 10% 100%

Others
0.08 0.05 0.13 0.15 0.59 1

8% 5% 13% 15% 59% 100%

Table 4b. Cross validation summary for training data using C50 algorithm

Predicted Group

Work School Academy Shop Others Total

Work
0.89 0 0 0.05 0.06 1

89% 0% 0% 5% 6% 100%

School
0 0.88 0.03 0.02 0.07 1

0% 88% 3% 2% 7% 100%

Academy
0 0.02 0.81 0.07 0.1 1

0% 2% 81% 7% 10% 100%

Shop
0.06 0.07 0.05 0.74 0.08 1

6% 7% 5% 74% 8% 100%

Others
0.05 0.03 0.11 0.12 0.69 1

5% 3% 11% 12% 69% 100%
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complicate the overall prediction process and increase the misclassification 
error. Deriving activity chains and validating it against the HHPTD would 
be the next step because there is a unique card ID for each person and the 
activity chains could be easily derived then. 

6. ILLUSTRATION OF RESULTS WITH MATSim

Detection of activities of transit smart card users has many implications 
on analyzing the travel patterns. Predicted work activities are converted 
into the input demand file of a simulation package, MATSim4 (Multi-Agent 
Transport Simulations). Commuting trips are then simulated and work 
locations of typical bus line users are visualized. Figure 6a and 6b show the 
home and work locations of users of bus route number 420. As it is evident 
from Figure 6b, most of the users work in the areas where they have to 
transfer to other transit lines. Those working in the central areas of Seoul 
above Han River would transfer to other routes to reach their work places. 
Such information can help practitioners and transit authorities to obtain an 
insight on the location of the potential users and improve their services by 
adding more direct routes that minimize transfers and increase the level of 
service.

(a) Home location 

 4 http://www.matsim.org/ 

http://www.matsim.org/
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(b) Work location
Fig. 6. Home and work locations of a typical bus line user (route 420)

7. CONCLUSION

The focus in this chapter was on methods for estimating destination 
and activities related to smart card users. Our experience is that the 
main activity types such as home, work and educational activities which 
include both school and academy could be predicted using various 
models. Previous researchers have applied various models such as naïve 
Bayes probabilistic models and achieved satisfactory results. In this 
chapter applications of tree classification and decision tree models are 
discussed. It is found that the decision tree algorithm C50 performs better. 
Results of these models could be implemented in various activity-based 
planning tools and can help operators to understand behaviour patterns 
and flexibility in demand, which is sensitive to land-use changes. For 
improvements of prediction results, it would be desirable if household 
travel surveys could include questions such as number of transfers, route 
choice as well as more accurate information on travel times and frequency 
of activities over a weekly horizon. Such improvements would lead to more 
accurate predictions in various planning tools. The discussion on fusion of 
household survey and smart card data is continued in Chapter 5.
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A B S T R A C T
 Understanding and modelling traveller’s decisions on public transport
 systems by correctly analysing their choices and being able to forecast
 flows on the network are essential elements in urban planning. For this,
 smart cards have arisen as a valuable information source in the past
 decade, providing massive information at low-cost. This chapter analyses
 how smart card data can help us understand traveller’s decisions within
 public transport systems, identifying the relevant factors being taken into
 account and quantifying the impact that different characteristics of the
 system have on the preferences of travellers. A case study for Santiago,
 Chile is presented; the study incorporates perceptions and preferences
 on a variety of factors (such as crowding, transferring and network
 topology) to enhance the explanatory and forecasting capabilities of
travel demand models.

1. INTRODUCTION 

Public transport systems play a fundamental role in developing any city. 
To effectively promote the use of public transport (in contrast to private 
modes), it is fundamental to understand the decision-making process of 
public transport travellers, as well as their preferences and perceptions. 
Within a public transport system, travel decisions are made at two levels: 
(i) choice of public transport mode (bus, metro, tram, multi-modal trips, 
etc.) and (ii) choice of travel route (selection of public transport lines and 
transfer points along the way). There is a dependency in these decisions 
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and their order might depend on a particular public transport system’s 
characteristics.
 Understanding how public transport users make their travel decisions 
and being able to predict their behaviour is essential in transportation 
planning. Route choice models have been developed for private transport 
networks (Bovy and Stern 1990; Ramming 2001; Prato 2009), but not much 
work has been done in public transport networks (Hunt 1990; Bovy and 
Hoogendoorn-Lanser, 2005; Raveau et al. 2011). The route choice variables 
normally included in traditional route choice models limit to some basic 
service levels attributes of the alternative routes, such as travel time and 
fare (Ortúzar and Willumsen 2011). However, other variables, related to 
both the level of service and the traveller’s perceptions, influence the user’s 
route choice process but are generally ignore in traditional modelling. 
 This chapter proposes one main research question: what are the 
relevant factors that affect multi-modal route choices within a public 
transport system? The answer to that question determines, at the end, 
the levels and structure of public transport demand. Any policy maker 
or practitioner looking to answer that question must face two main tasks: 
data collection and mathematical modelling. It is on the data collection task 
where smart cards (and other intelligent transport system technologies) 
have arisen as a valuable information source in the past decade. Traditional 
data collection methods used to rely on paper-based surveys, which could 
be tailor-made for the particular aim of a study, but usually offer small 
penetration rates at high costs. Smart card data, however, can provide 
massive information at low-cost (in fact, the most time/resource consuming 
aspect tends to be related to the processing of the information), but is more 
rigid in terms of information collected.
 The contents of this chapter focus almost exclusively on analysing the 
travel decisions of public transport users, without analysing the decisions 
of travellers of other modes (most significantly, car users). Although, the 
decision of choosing public transport modes over the other alternatives is a 
significant one, the focus is on analysing the subsequent decisions once the 
travellers have decided to use the public transport system.
 The organization of the reminder of the chapter is as follows. In Section 
2, there is a presentation of the theoretical background for analysing and 
modelling travel decisions on public transport systems; in Section 3, there 
is discussion on some particularities of modelling multi-modal route 
choices on public transport systems with smart card data, in Section 4, 
there is a presentation on a case study for the public transport system of 
Santiago, Chile; and finally in Section 5, the main conclusions are given.

2. THEORETICAL BACKGROUND

This section explores the methodological framework for modelling 
multi-modal route choice behaviour in public transport systems. The 
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mathematical modelling tools were mostly developed to analyse these 
decisions on private transport networks (and therefore could be extended 
to the study of multi-modal networks). The core assumption is that the 
public transport alternatives could be defined as multi-modal routes (i.e., 
routes that can incorporate legs in different modes, such as bus and metro) 
and therefore the focus is on route choice modelling. As stated by Prato 
(2009), route choice analysis comprises two major modelling challenges: (i) 
generating a choice set of alternative routes and (ii) estimating a discrete 
choice model.
 A conceptual behavioural framework, which relates both modelling 
challenges from a behavioural point of view, is shown in Figure 1 (Bovy 
2009). A public transport system comprises of a set of Existing Routes 
between different origins and destinations. Considering routes with 
loops, this set could be potentially infinite. Depending on the levels of 
available Information, a particular traveller can only consider his/her 
Known Routes. Any unknown route will never be selected, independent of 
its level of service. Depending on individual or external Restrictions (such 
as possessing a public transport pass for a particular mode), the traveller 
can only choose between his/her Available Routes. Obtaining this set of 
alternative routes corresponds to the first modelling challenge. Depending 
on his/her Preferences (i.e., the relative importance given to the different 
attributes that include the level of service), the traveller can then Order the 
available routes from most attractive to less attractive. Finally, when the 
Decision is made, the modeller can see the Chosen Route. Understating the 
decision-making process that lead to this choice corresponds to the second 
modelling challenge.

Traveller

Transport System

Existing routes

Information

Restrictions

Preferences

Decision

Known routes

Available routes

Ordered routes

Chosen route

Fig. 1. Route choice behaviour
(Adapted from Bovy 2009)
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2.1 Choice-Set Generation Methods

When understanding and predicting route choice decisions within a 
transport network, it is necessary to explicitly generate a set of alternative 
routes (from which the travellers will choose their best alternative). 
Unlike other discrete choice contexts (particularly, mode choice), transport 
networks tend to offer a large number of routes between a given origin and 
destination. Enumerating all these alternatives cannot be done in practice, 
and at the same time it is well accepted that travellers only consider a 
subset of all possible alternatives (either because of lack of information, 
restrictions or preferences). This way, different generation methods have 
been proposed to generate reasonable choice sets. These methods tend 
to rely on shortest-paths algorithms, with different specifications of the 
network costs, and simulation methods. A comprehensive review of some 
of the existing choice-set generation methods for route choice can be found 
in Prato (2009).
 When defining what constitutes an alternative route, it is necessary to 
consider the different travel strategies that travellers can follow. In public 
transport networks with uncertainty on the waiting times (i.e., frequency 
based systems without timetables), travellers can reduce their expected 
total travel time by considering a set of common lines. The travellers may 
not choose a single service, but may board the first service from a set of 
lines (Chriqui and Robillard 1975; Spiess and Florian 1989). Therefore, 
an alternative route could be composed of a sequence of multi-service 
legs. This is a significant difference between route choice modelling in 
private transport networks and route choice modelling in public transport 
networks.

2.2 Discrete Choice Models

There are different choice models based on system attributes perceived 
by travellers and their socio-economic and demographic characteristics 
(in the context of route choice, see for example, Dial 1971; Daganzo and 
Sheffi 1977; Ramming 2001; Prashker and Bekhor 2004). The basis of these 
models relies on an assumption of rationality; each traveller chooses a route 
(among the set of available alternatives) to get the maximum possible utility 
level (McFadden 1974). It is also assumed that the modeller, who is just an 
observer, does not have perfect information about the decision-making 
process, which leads to probabilistic choice models. The most widely 
used of these discrete choice models (in transportation analysis) is the 
Multinomial Logit Model (MNL).
 Although the MNL model is widely used due to its simplicity, its 
principal limitation is that it does not consider correlation between 
alternatives. This might be particularly serious when modelling route 
choices, as strong correlation between the alternative routes may arise due 
to overlapping. In urban public transportation networks, the routes linking 
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a given origin-destination pair will typically have many overlaps due to 
common arcs, so the independent error assumption of the MNL model is 
unrealistic.
 To further understand the problem of route overlapping, let us 
consider the simple network depicted in Figure 2(a), where there are three 
alternative routes with the same length d, two of which share a common 
link with length (d–a). For simplicity, we can assume that the length is the 
only relevant attribute of the utility. If a MNL is applied, the probability of 
choosing any route (in particular the upper link, which has no overlapping) 
is 1/3, independent of the value of a. This is consistent with the case 
depicted in Figure 2(b), where a = d and there is no overlapping (the three 
alternatives are independent, and have a probability of being chosen of 1/3). 
Nevertheless, if a = 0 as shown in Figure 2(c), the two overlapping routes 
collapse into a single alternative, and the probability of choosing any route 
(in particular the upper link, which has no overlapping) is 1/2. This way, 
it is clear that the probability of choosing the upper link varies between 
1/3 and 1/2 depending on the value of a, something that the MNL model 
cannot accommodate.
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Fig. 2. Overlapping example

Different extensions of the MNL model have been proposed to explicitly 
capture correlation between alternative routes. A comprehensive review 
of some of the existing models that deal with route correlation due to 
overlapping can be found in Prato (2009).

3. MODELLING BEHAVIOUR WITH SMART CARD DATA

In the literature, it is possible to find multiple route choice models (mainly 
MNL models or extensions of it), where the utility level of the alternative 
routes depends on some key route attributes. Usually, these route 
attributes are all tangible and quite limited to travel time components, 
fare and transfers. Depending on the available information, the 
representative utility is sometimes refined using individual socio-economic 
characteristics, like income or gender, to model different preferences 
across the travellers. Nevertheless, it is a well-established fact that public 
transport traveller’s decisions are affected by psychological considerations 
such as aesthetics, comfort and travel-time reliability (see Papinski  
et al. 2009). However, there are inherent difficulties in integrating this kind 
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of factors into route choice modelling that stem from (i) there subjectivity, 
given that each user perceives them differently; and (ii) there tangibility, 
since there is no scale for measuring them.

3.1 Modelling Origins and Destinations

A key element when modelling multi-modal route choices in public 
transport systems is knowing the origin and destination of each trip. 
That is the input for the first modelling challenge, generating a choice set 
of alternative routes. In this sense, smart card data provide significant 
information of origins for each trip leg, especially on systems where its 
penetration rate is high (as on many public transport systems around the 
world different payment technologies coexist). Unfortunately, data about 
destinations is not always available, as some public transport systems with 
flat fare schemes require the traveller to tap-in (recording origins) but not to 
tap-out (not recording destinations).
 This way, smart card data by itself, in many cases, is not enough 
to model route decisions in public transport systems. In those cases, 
additional modelling and/or data processing techniques are necessary. 
These techniques might require combining different data sources (e.g., 
smart card data + GPS data), applying mathematical models to infer the 
destinations, (see Chapter 2 or Munizaga and Palma, 2012), or changing the 
modelling approach to model sequences of stops (based on the recorded 
tap-ins) instead of whole routes.
 An additional limitation of smart card data is that the information 
recorded only covers the stop-to-stop decisions within the public transport 
system. No information regarding access and egress (from/to the real 
origins and destinations of the trip) is recorded. Therefore, no behavioural 
analysis can be made about the choice of public transport stops or 
modes (i.e., walk to a close bus stop or a far metro station). This could be 
particularly serious in cases where non-walk modes (such as bicycle, park-
and-ride, kiss-and-ride or taxi) are chosen to access or egress the public 
transport network, as they constitute multi-modal legs of the entire trip.

3.2 Modelling the Choice-Set

A significant advantage of smart card data is that a great amount of 
traveller’s actual route choices become available, especially on systems with 
large penetration rates. Modellers can benefit from this fact to validate and 
enrich their choice-set generation methods. The massive information from 
smart card data has recently led to heuristic choice-set generation methods, 
where the choice-set for a particular origin-destination pair includes only 
the routes chosen by all the travellers (Raveau et al. 2011). This way, there 
is no need to generate any non-chosen routes, as they are not considered 
when modelling.
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 These heuristic methods could be directly applied to aggregated 
choice models, where no non-chosen route will be a part of the choice-
set. Arguably, if no traveller in the system chooses a given route over 
a long period of time, that route may not be a part of the consideration 
set (and therefore, its predicted flow will be zero, as observed). From a 
disaggregated (i.e., individual) choice perspective, the assumption that 
non-chosen routes are not considered might not have a strong behavioural 
support. A given commuter might choose the same route every day 
because it is the best for his/her necessities and preferences, not because 
there are no other alternative routes. Even more, there is still a need in the 
literature for choice-set validation methods using smart card data.

3.3 Modelling Travel Times and Fares

Traditionally the most important variables used to explain route choice 
behaviour are fare and the travel time. Users tend to look for the fastest 
and least expensive way of getting from their origin to their destination 
and these two variables are the main criterion to discard unattractive (i.e., 
slow or expensive) alternatives. Regarding fares, their obtaining depends 
on the charging scheme and is generally straightforward. An advantage of 
smart cards is that they can record different traveller types that might be 
subject to different charging schemes (e.g., elders, students and concession 
cards).
 Regarding travel time, many components could be considered: in-
vehicle time, waiting time at the origin station and all subsequent transfer 
stations and walking time when transferring. As mentioned in Section 3.1, 
access and egress times are usually not available and therefore ignored. 
Ideally, these different time components might be considered separately 
to address their different perception and importance in the traveller’s 
decision-making process. Nevertheless, smart cards can only record the 
times of tapping-in and (sometimes) tapping-out and therefore offer a leg 
time. If the tap-in happens at the station (like in metro and BRT systems), 
then the waiting time would be included in that leg time, but if the tap-
in happens at the vehicle (like in traditional bus systems), then the waiting 
time would not be part of that leg time. Either way, it would not be possible 
to separately find travel time and waiting time.

3.4 Modelling Transfers

Regarding the transferring experience, the traditional approach is to 
consider the total number of transfers of each alternative route; as the real 
transferring time is captured by the walking and waiting time variables, 
this variable solely captures the displeasure of having to transfer. This 
information is generally obtained directly from smart cards. To further 
understand the transferring valuation, it is convenient to differentiate 
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between possible types of transfers (Raveau et al. 2011; Raveau et al. 2014), 
in terms of stations layout, infrastructure, available travel information and 
additional services. This information has to be externally collected.
 A traditional limitation of smart card data is that transfers within some 
modes (mainly metro systems) are usually not recorded. This way, the 
definition of trip legs is modified to model traveller’s decisions, combining 
the unidentified legs on that particular mode (Tan et al. 2015). This is 
illustrated on Figure 3, where the smart card data fails to record: (i) the 
access leg, as the first record is the tap-in on Bus Line 1, (ii) the transfer 
between Metro Lines A and B and (iii) the egress leg, as the last record is 
the tap-out on Bus Line 2. As mentioned in Section 3.1, it is only possible 
to model the stop-to-stop route choice. An additional simplification, by not 
distinguishing the different travel alternatives inside the metro network, 
needs to be made to model the trip in this case.

Real Trip

Modelled Trip

Walk

Access

Bus

Line 1

Metro

Line A

Metro

Line B

Bus

Line 2

Taxi

Egress

Bus

Line 1

Metro Bus

Line 2

Fig. 3. Modelling unidentified legs

3.5 Modelling Comfort

The level of comfort and crowding experienced by the public transport 
users during their trip is also an important factor (Raveau et al. 2011; 
Tirachini et al. 2013). Capturing the comfort perception is not easy, as there 
is no clear measurement scale for comfort. One alternative is to use proxy 
variables, such as the mean occupancy along the route or the availability 
of air conditioning in the vehicles. In this sense, smart cards have become 
a significant source of information, as they have the potential to record 
the boarding and alighting of passengers for all vehicles at all stops. With 
this information, load profiles (and therefore crowdedness and occupancy 
indicators) could be obtained. Additional variables related to train usage, 
such as the possibility of getting a seat or the possibility of not boarding the 
first train could be considered. Regarding the possibility of not boarding, 
when that happens there is an excess waiting time that could be added to 
the time components mentioned above.
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3.6 Modelling Individual Preferences

Traveller’s socio-economic characteristics can influence their decisions 
and should be considered when modelling multi-modal route choices on 
public transport systems. When using smart card data, only some of the 
individuals’ characteristics might be available. Among the ones that are 
usually not available are: (i) the purpose of the trip, (ii) the income level 
(especially relevant when related to fare), (iii) the gender and (iv) the age 
of the traveller. On the other hand, smart cards can collect other relevant 
information: (i) the time of the day when the trip begin (particularly 
peak or off-peak periods), (ii) the fare type (which might be also used to 
infer age, as students and seniors can have discount passes) and (iii) the 
frequency of the journey (e.g., daily, weekly, monthly, first time).

3.7 Modelling Travel Strategies

In available literature, it is usual to assume that all travellers are capable 
of considering high-complexity strategies (which might require developed 
analytical capacities). Similarly, it is usually assumed that all travellers have 
perfect information about the levels-of-service of all available alternatives. 
As expected, those assumptions cannot be true for a considerable 
proportion of the travellers and there is not enough empiric evidence 
to support (or disclaim) them. In this sense, smart card data could be a 
significant source of information, as it is possible to observe the repeated 
choices of individuals over long periods of time (mainly the high frequency 
trips, like work/school commute).
 Based on the observed decisions for the same trip, it is possible to infer 
travel strategies: a given traveller might choose different bus lines between 
the same pair of stops on different days, which might be an indicator of 
common lines consideration (Schmöcker et al. 2013). The observed choice 
proportion of a given bus line can then be compared with the theoretical 
choice proportion according with the common lines theory, which depends 
on the bus lines frequencies. This way it is possible to get some insights 
about travel strategies.

4. CASE STUDY: SANTIAGO, CHILE

Multi-modal route choice models are applied to the public transport 
network of Santiago, Chile (6 million inhabitants). In Santiago, over 
4 million trips are made daily on public transport modes. The public 
transport system (Transantiago) consists of 191 feeder (local) bus lines, 118 
trunk bus lines and 5 metro lines. The demand is comprised of 730,605 
trips in the morning peak period (6:30 AM to 8:30 AM). It is important to 
consider that, in Transantiago, travellers only tap-in when boarding the 
buses and accessing the metro system. Therefore, the alighting bus stops 
and metro stations has to be inferred (Munizaga and Palma 2012) to get the 
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chosen routes. The smart card (demand information) was complemented 
with information on the levels-of-service (supply information) provided 
by the public transport authorities. The network is modelled with 616 one-
way bus lines and 10 one-way metro lines. These lines generate a network 
with 852,548 line segments (which can be grouped to generate 663,696 route 
segments when considering common lines). There are 11,113 bus stops and 
108 metro stations (modelled through 216 directional stops).

4.1 Choice-Set Generation

The set of alternative routes between public transport stops was generated 
using the link penalty approach (De la Barra et al. 1993). For each origin-
destination pair, the shortest path was found using link-additive 
generalized costs, defined as a weighted sum of different attributes: fare, 
in-vehicle time, waiting time, walking time (when transferring), number 
of transfers (distinguishing between bus-to-bus, bus-to/from-metro and 
metro-to-metro), the possibility of travel seated and the possibility of not 
being able to board the first bus/train due to crowding. The weights for all 
these attributes were defined based on Raveau and Muñoz (2014).
 The shortest path for each origin-destination pair in individual 
iteration is penalized, increasing its cost by 50%. With the updated costs, 
a new shortest path is found. This new shortest path is compared with 
the one(s) found earlier and kept in the choice set if the overlapping is less 
than 50% (in terms of shared route segments) with them. This process is 
conducted until three shortest paths that satisfy the overlapping criterion 
are found for each origin-destination pair.
 The coverage of the choice set generation approach is 91%, as 663.599 
of the 730.605 observed paths are recovered by the algorithm. This value is 
high, considering that only three alternatives are generated for each origin-
destination approach. As the paths that travellers follow within the metro 
system are not recorded, the coverage of metro legs only takes into account 
access and egress stations (and not the potential paths that travellers may 
take within the system).

4.2 Model Specification

With the demand data obtained from the smart cards, route choice models 
can be estimated. For this, it is necessary to characterize the representative 
utilities of each available alternative. The attributes considered and the way 
they are obtained is described below:

Fare: Given the fare scheme in Transantiago, the fare of each alternative 
route depends exclusively on the usage of metro in any of the trip legs. 
Using metro has an additional cost of US$0.16 in the morning peak period.

In-vehicle time: Based on GPS data provided by the Santiago public 
transport authorities, bus travel times were calculated for the different road 
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network links. Metro travel times were obtained from operational time 
tables, assuming the fastest path between access and egress metro stations.

Waiting time: Based on GPS data and recorded bus headway, empirical 
frequency distributions were found for each bus lines (these frequencies 
can differ from the operating plans due to congestion and bus-bunching). 
Following Welding (1957), expected waiting times were obtained for each 
bus stop in the network. The waiting times for metro lines correspond to 
half of their headway, due to its regularity, assuming minimum number 
of transfers (as each transfer means additional wait) within the metro 
network.

Walking time: As the smart card data covers stop-to-stop trips, the 
walking time corresponds only to transfers (access and egress are not 
captured). Transfer times within the metro system were obtained from 
field measurements (Raveau et al. 2011), assuming minimum number of 
transfers. The transfer times that involve bus were computed assuming a 
Manhattan walking grid between stops and a walking speed of 1 m/s.

Transfers: The number of transfers distinguishes four different transfer 
types: metro-to-metro, metro-to-bus, bus-to-metro and bus-to-bus. As 
the smart card data does not record the path decisions within the metro 
network, the metro-to-metro transfers correspond to the minimum number 
of necessary transfers between access and egress stations.

Occupancy: From the smart card data it is possible to get fairly accurate 
load profiles for the different bus lines. For the metro lines, trips within the 
metro systems were assigned using an existing route choice model defined 
specially for that mode (Raveau et al. 2011). The occupancy variable is 
defined as the distance-weighted ratio between passengers load and vehicle 
capacity. By definition the rate can vary between 0 (vehicles travelling 
empty along the entire route) and 1 (vehicles travelling fully loaded along 
the entire route).

Possibility of seating: This variable is related to the use of vehicle at low 
crowding levels distinguishing those stops where there is a possibility 
of getting a seat (depending on the occupancy of the vehicles when they 
leave the stop). In Transantiago this happens when the occupancy is 15% 
or less (these percentages represent the percentage of the capacity that 
corresponds to seats).

Possibility of not boarding: This variable is related to the use of vehicle at 
high crowding levels where there is a possibility of not boarding the first 
vehicle (and thus have to wait for the next vehicle). In Transantiago this 
happens when the occupancy is 85% or more.

Angular cost: To deal with the topology’s effect on the route choices of 
the travellers, the model includes an angular cost to measure how direct 
a certain route is. Accordingly with Raveau et al. (2011) the angular cost is 
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defined as shown by Equation (4.1), where s represents a leg of the route, ds 
is the distance of leg s and qs is the angle formed between the destination 
stop, the first stop of leg s and the last stop of leg s.
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Commonality factor: Finally, a commonality factor is incorporated to 
deal with the correlation between routes due to overlapping (Cascetta et 
al. 1996). This commonality factor is defined according to Equation (4.2), 
where Li is the total length of route i, Lj is the total length of route j, Lij is 
the common length of routes i and j (due to overlapping), g is a positive 
parameter to be estimated and A(q) are the available alternatives for 
individual q.
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4.3 Estimation Results

Based on smart card data from Transantiago, a C-Logit model (Cascetta et 
al. 1996; Cascetta et al. 2002) was estimated to understand the traveller’s 
decision-making process while selecting public transport routes. The 
estimated parameters their t-values and goodness-of-fit indicators for 
the model are given in Table 1. It can be seen that all variables have the 
expected sign (with the exception of the possibility of seating, all level-
of-service parameters are negative, as they represent a disutility) and are 
statistically significant at 95% confidence.
 Based on the obtained parameters, it is possible to calculate monetary 
and temporal valuations for the different attributes (Table 2). These values 
correspond to the marginal rates of substitution with respect to the fare 
and the in-vehicle time. The angular cost and the commonality factor are 
excluded from this analysis, as they do not have a measurement scale. It 
can be seen than public travellers in Santiago value differently the different 
time components; among which the highest disutility comes from walking 
(due to the physical effort) followed by waiting (due to uncertainty). 
Amongst the transfer types, the worst kind is bus-to-bus (travellers are 
willing to travel up to 23 extra minutes to avoid them) while the least 
unpleasant is metro-to-metro. Bus-to-metro and metro-to-bus transfers 
are perceived similarly. The variables related to occupancy are significant, 
with travellers willing to travel 11 more minutes to find a seat or 16 more 
minutes to avoid a denied boarding.
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Table 1. Estimation results

Attribute Parameter t-value

Fare (US$) –4.60 –2.4

In-vehicle time (min) –0.11 –9.4

Waiting time (min) –0.24 –6.4

Walking time (min) –0.32 –2.3

Number of Bus-to-Bus transfers –2.62 –10.6

Number of Bus-to-Metro transfers –1.61 –5.3

Number of Metro-to-Bus transfers –1.47 –5.9

Number of Metro-to-Metro transfers –0.97 –2.2

Occupancy –2.75 –2.1

Possibility of seating 1.23 3.4

Possibility of not boarding –1.79 –6.5

Angular cost –1.45 –2.9

Commonality factor –0.76 –3.0

Sample size 663,599

Log-likelihood –668,814

Corrected r2 0.386

Table 2. Attribute valuations

Attribute Monetary Valuation Temporal Valuation

1 hour of In-vehicle time 1.46 US$ -

1 hour of waiting time 3.11 US$ 2.13 hours In-Vehicle

1 hour of walking time 4.11 US$ 2.81 hours In-Vehicle

1 Bus-to-Bus transfer 0.57 US$ 23.41 minutes In-Vehicle

1 Bus-to-Metro transfer 0.35 US$ 14.38 minutes In-Vehicle

1 Metro-to-Bus transfer 0.32 US$ 13.14 minutes In-Vehicle

1 Metro-to-Metro transfer 0.21 US$ 8.83 minutes In-Vehicle

1% of occupancy 0.60 US¢ 0.25 minutes In-Vehicle

Possibility of seating 0.27 US$ (1) 10.98 minutes In-Vehicle1

Possibility of not boarding 0.39 US$ 15.98 minutes In-Vehicle
 1 Absolute value, as this attribute represents a gain in utility.
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5. CONCLUSION

Understanding public transport traveller’s preferences and decision-
making processes is essential in transportation planning to correctly 
predict travel decisions and the resulting flows on public transport 
networks. For this, it is necessary to identify the relevant factors which 
are considered and quantify the impact that different characteristics of 
the system have on their decisions. For this purpose, smart card data have 
arisen as a valuable information source in the past decade, as they can 
provide a significant amount of information related to the actual decisions 
of travellers. This information can be used to model their decision-making 
process and preferences through mathematical models.
 Route choice modelling variables are traditionally limited to some 
tangible factors such as time and fare that, although relevant, fail to 
accommodate different aspects of traveller’s behaviour. This chapter 
specifies and estimates a route choice model for the public transport 
system of Santiago, considering different types of variables: travel time 
components, transfers, occupancy and comfort indicators, network 
topology and path overlapping. All these variables are significant for 
understanding traveller’s behaviour. This reassures the idea that public 
transport users take into account a variety of attributes when choosing 
routes.
 Finally, from a social planning point of view, it has been shown and 
confirmed that travellers take into account a variety of attributes while 
choosing their routes and that their preferences can vary depending on 
their gender, the time of the day or the purpose of the trip. Travellers do not 
only care about travel times and number of transfers, but also care about 
crowding and topological factors. These results might be considered by the 
authorities and the planners, as many of the factors included in this study 
are not generally included in traditional route choice models.
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A B S T R A C T
 The features of smart card data, i.e., precision, continuity and long-term
 observation enabled us to analyse the dynamic characteristics of travel
 behaviour. In order to explore the dynamic characteristics of a large
 amount of information in the data set, previous studies have developed
 data mining methodologies and applied them. However, the smart card
 systems were not specialized to collect a data set for travel behavioural
 analysis. The smart card data offer only fragmentary information on
travel behaviour though they can provide accurate and continuous long-
 term data, which is difficult to achieve via conventional behavioural
 surveys. In order to supplement absent behavioural attributes in the
 smart card data, this study proposes a data fusion method of smart card
 data with the person trip survey data. The results of the data fusion enable
 us to analyse the continuous long-term features of the trip purpose of
 transport users, which are difficult to get from either the survey-based
 data or the smart card data. These results enable us to know specific
behavioural segments, which caused changes in travel demand.

1. INTRODUCTION

Smart card systems have been widely installed as a method to collect 
fare of public transport. These systems automatically and continuously 
collect the records of passenger’s use of the public transport with 
identification information. The amount of information storing in the data 
set is constantly increasing. And the data set is expected to include much 
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traveller’s information utilizable for transit planning, management and 
operation (see Pelletier et al. 2011). For example, as a management strategy, 
Asakura et al. (2008a) proposed a collaborative travel demand management 
(TDM) scheme in which a shopping centre provided incentives for 
customers who use railway transport. A railway company’s smart card 
system used to verify the use of railway transport near the shopping centre. 
Asakura et al. (2012) showed an improvement in passenger behaviour 
caused by introduction of a new train timetable, which decreased the travel 
time between several stations. They showed analyses of the departure, 
travel and arrival time distributions using smart card data. Thus, precise, 
continuous and long-term observation data could be used to show the 
dynamic characteristics of travel behaviour even though the records in 
the data set only include information on the date, time, place of boarding/
alighting and ID.

1.1 Exploration of Smart Card Data Set Using Visualization

Visualization is one of the fundamental methods used to explore the 
dynamic characteristics of a large amount of information in a data set of 
smart cards. Figure 1 shows an example of the visualization results, which 
describe the potential of the smart card data set for understanding travel 
behaviour. The figure shows the amount of passengers who boarded the 
trains, according to the date and time at Station I. Location of Station I is 
in the central business district (CBD) in the Osaka metropolitan area in 
Japan. The horizontal axis indicates the time of day and the vertical axis 
indicates the date. The grey scale represents the number of trips. Although 
this visualization method does not consider ID information, several 
characteristics of passenger behaviour are distinguishable. For example, 
vertical stripe is found in the morning peak but they are not found in the 
evening peak. This example shows that passengers travel according to the 
train schedule in the morning and morning commuters are more sensitive 
to time than evening passengers.
 Asakura et al. (2008b) proposed another visualization method 
for smart card data recorded at the ticket gates of both the origin and 
destination stations. Figure 2 shows a relational map of the scheduled 
train times and gate passage times derived from the transaction data. The 
horizontal axis indicates the time of arrival and the vertical axis indicates 
the time of departure. The dots show the time when the passengers pass 
through the gates at the departure and arrival stations. Each record from 
the transaction data is plotted as a dot in this map. The horizontal lines 
on the map represent the departure times of trains and the vertical lines 
represent the arrival times. Passengers can board trains that are plotted 
above the dot and they can alight from trains plotted on the left side of 
the dot. A passenger can take any train that departs after their entry at the 
departure station only if that train arrives before the passenger’s exit time 
at the arrival station. As shown in the figure, the passenger can choose 
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from several train types, which have different stops and travel times. The 
passengers tended to use faster train services. However, a few passengers 
still used slower services to avoid congestion.
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Fig. 1. Simple visualization of smart card data – number of passengers who boarded at Station I
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Fig. 2. Relational map with actual smart card data and train timetable (Kusakabe et al. 2010)

1.2 Interpretation of Features of Smart Card Data Set

If an analyst has experience of and knowledge about a target transport 
system, he/she can intuitively and easily determine characteristics of 
data using the simple visualization methods owing to the precise and 
continuous data set. However, the certainty of interpretation of the 
characteristics depends on the ability of the analysts. This is because the 
data set is fragmentary for behavioural analysis. For example, the data do 
not directly include the passenger’s origins, destinations, or trip purposes 
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and the data do not represent travel behaviour throughout the entire 
transport network. 
 In order to achieve a consistent interpretation of the data set, several 
studies have attempted to develop methods to estimate the user segments 
or the behavioural contexts from behavioural patterns observed using 
smart card data. Kusakabe et al. (2010) developed an algorithm to estimate 
the most likely train boarded by a passenger. Their method relied on train 
timetable data and precise time records obtained at both the boarding and 
alighting gates. By using the method, the relationship between the train 
choice and the timetable were analysed. 
 Passenger ID is also useful information to analyse travel patterns. It 
enables us to analyse each passenger’s trip frequency, travel sections and 
trip sequences. Travel patterns and their variability over long-term periods 
can thus be analysed (e.g., Bagchi and White 2005 and Utsunomiya et al. 
2006). Agard et al. (2006) and Morency et al. (2007) determined behavioural 
pattern groups and showed the variability in traveller behavioural patterns. 
Kusakabe and Asakura (2011) proposed a method to classify within-day 
and day-to-day behavioural patterns of smart card users using a latent class 
model. However, the meaning of the segments of the smart card users, 
determined by the behavioural patterns, should be subjectively interpreted 
by analysts in these studies. 

1.3 Interpretation of Features Using Data Fusion

The smart card data offer only fragmentary information on travel 
behaviour though they can give continuous long-term data, which is 
difficult to achieve via conventional behavioural surveys. For example, the 
possible duration of travel-behaviour surveys in the previous studies is 
less than a few months even if the survey employs technologies such as a 
global positioning system (GPS), which enables us to automatically track 
respondents (e.g., Murakami and Wagner 1999; Asakura and Hato 2004; 
Wolf et al. 2001 and Draijer et al. 2000). In contrast to smart card data, 
survey-based data could be used to directly get detailed information on 
travel behaviour. If these data are integrated, there could be understanding 
of the relationship of behavioural attributes that cannot be obtained from 
either smart card data or survey-based data alone. Data fusion is one of the 
approaches to integrate multiple data sources and it is applied in various 
fields, such as the military, marketing and intelligent transportation 
systems (e.g., Hall 1992; Mitchell 2007; Kamakura and Wedel 1997; El Faouzi 
et al. 2011, Shen and Stopher 2013; Kusakabe and Asakura 2014 and Gong 
et al. 2014). For example, Shen and Stopher (2013) developed a trip purpose 
imputation method for GPS data by using the National Household Travel 
Survey (NHTS) in the US. In their method, the trip purpose, which was 
not directly, determined using GPS data, was estimated using the rules 
obtained from the NHTS data. 
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 In this chapter, application of the data fusion method proposed by 
Kusakabe and Asakura (2014), to estimate the trip purpose of passengers 
from smart card data gained at several stations. The proposed method is 
to enhance the understanding of travel behaviour during monitoring of 
the smart card data. The results of the data fusion enable us to analyse the 
continuous long-term features of the trip purpose of transport users, which 
are difficult to get from either the survey-based data or the smart card data. 
The analysis in this study focuses on finding the relationship between 
the estimated trip purpose and travel patterns. The expected result is to 
suggest specific behavioural segments, which cause changes in travel 
demand. 
 Section 2 presents the proposed data fusion method for smart card data 
and person trip survey data. Section 3 presents the empirical analysis and 
validation to confirm that the method can show changes in behavioural 
features of transport usage observed using the smart card data. Section 4 
concludes this study.

2. MODEL

This study employs the method proposed by Kusakabe and Asakura (2014), 
based on the Naïve Bayes classifier (Rish 2001). Their proposed model 
estimated the trip purposes of transit smart card users by combining the 
information from person trip survey data. The model was calibrated using 
the survey data and then applied to smart card data to estimate the trip 
purposes. Their proposed framework could be used for other travel context 
estimations such as origin and destination estimations for a trip. 
 Section 2.1 shows the data structures discussed in this study. Section 
2.2 presents an overview of the proposed data fusion method. Section 2.3 
presents the method using the Naïve Bayes probabilistic model. Section 2.4 
describes the estimation of the Naïve Bayes probability functions.

2.1 Schema of Smart Card Data and Person Trip Survey Data

Records of trips using railway transport in the person trip survey data 
contain the ID of a card, trip ID, origin and destination of the trip, 
departure and arrival times and trip purpose. The boarding and alighting 
stations and times are also included. The data items in the smart card data 
include the card ID, date, boarding station/time and alighting station/
time. The two data sets do not have common IDs. Although these two data 
sets are collected separately, both the smart card data and the person trip 
survey data contain information on the boarding and alighting stations 
and times. 
 The information on the boarding and alighting stations and time 
could be used to combine the two data sets. However, these attributes are 
not exactly same for the following two reasons. First, the accuracy of the 
information is different. The smart card data contain the exact minute 
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when a traveller passes through the gate at the station. However, the 
boarding and alighting time in the person trip survey data is reported after 
the trip. The information in the person trip survey is sometimes not correct 
and travellers possibly report the time rounded by 5 or 10 minutes because 
they report it from memory. This affects the time resolution of the discrete 
variables used in the proposed method. Second, the IDs of the smart card 
data are not always identical to the people. For example, a smart card could 
be shared among family members or a traveller can have more than one 
card. However, such cases cannot be common especially for registered 
monthly passes in Japan that associate a specific user with a smart card.

2.2 An Overview of Data Fusion Method

In previous studies, many types of machine learning methodologies 
have been implemented to estimate the purpose of trips in a passive data 
set such as GPS data (see Gong et al. 2014). One of the advantages of the 
Naïve Bayes classifier is that it requires a smaller amount of training 
data compared to other machine learning methods. The model is further 
described by using the simple probability functions that could be easily 
understood by analysts. However, this method does not deal with many 
correlated variables. This is because the Naïve Bayes classifier assumes that 
each element of an explanatory variable is conditionally independent of 
every other element to reduce the required number of data. When larger 
amount of attributes and larger training data sets are available compared 
with those of the person trip survey data, the estimation method could be 
replaced with a machine learning method more advanced than the Naïve 
Bayes classifier.
 Figure 3 shows the flow chart of the proposed data fusion method. The 
concept of data fusion is to estimate absent attributes of respective data 
sets. The behavioural attribute c represents the attribute observed only in 
the person trip survey data, such as trip purpose, origin and destination. 
Kusakabe and Asakura (2014) employed trip purpose as the behavioural 
attribute c. Definition of the possible values of c is: 
 C = {‘commuting to work or school’, ‘leisure-or-business’, ‘returning 
home’}. (2.1)
 Note that business purposes show the trips where travellers travel 
between their workplace and other places except their homes such as client 
offices. 
 The attribute F represents the commonly observed behavioural 
attributes included in both the data sets, such as boarding stations and 
times. Specifically, Kusakabe and Asakura (2014) employed F = {fa,fs} 
where fa is ‘alighting time’ and fs is ‘duration of stay’. The fa represents the 
time of the trip. Definition of the fs is the interval between the alighting 
time and the next boarding time at the same station. Both are discrete 
variables defined every hour. The duration of stay implicitly represents the 
duration of stay at the destination in addition to the travel time between 
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the alighting station and the real destination. The travel time includes the 
access and egress times with different modes of transport such as taxis and 
buses. The behavioural attribute g could only be derived from smart card 
data, such as trip frequency. A continuous collection method is required to 
derive g. The proposed method could be used to determine the number of 
trips with trip purpose c from the smart card data. In addition, the method 
provides the relationship between c and g, which cannot be obtained from 
only one data set. 
 The conditional probability distribution p(c|F) represents the 
probability, where the trip purpose is c at the gate of the station for 
attribute F. The distribution is estimated from the person trip survey 
data. By applying p(c|F) to the Naïve Bayes classifier, the trip purpose c is 
added to the data for each trip in the smart card data. This enables us to 
analyse time series changes in N(c), the number of trips with trip purpose c. 
Additionally, the relationship between c and g could be summarized using 
p(g|c), which is the conditional probability distribution of g for c.
 Figure 4 shows a conceptual representation of the estimation target c 
and F in the space-time dimensions. In the figure, presentation of the trip 
for the estimation where a traveller alights at Station A is given by a bold 
line. The trip purpose c of the trip is estimated from fa and fs by using p(c|F). 
Note that the ID information of a traveller is required to derive fs because 
the data of this variable are determined by two consecutive trips.
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Arrival

Station
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Arrival
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Fig. 3. An overview of data fusion method
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2.3 Formulation of Naïve Bayes Probabilistic Model

By using Bayes’ theorem, p(c|F) could be expressed using,
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where, p(c), p(F) and p(fk|c) are probability distributions estimated from the 
person trip survey data. The distributions p(c) and p(F) are derived from 
the composition rate of trips having attributes c and F, respectively. The 
conditional probability distribution p(fk|c) is derived from the percentage of 
trips having attribute fk corresponding to each value of trip purpose c. 
 By using F of each trip given by the smart card data, the trip purpose c 
of each trip is estimated using the Naïve Bayes classifier. The equation for 
the classifier is as follows:
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Note that considering p(F) as a constant because it does not depend on c. 
By using Equation (2.3), the number of trips with behavioural attribute c is 
expressed as,
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where,
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Ns(F) is the number of trips with a vector of attribute F determined by using 
the smart card system and S is a set of all the possible values of F. 
 Using a variable g derived from the smart card data, distribution of the 
trip purpose c of each g could be estimated using Bayesian inference. The 
joint probability of trips whose attributes are c and g are given by,

 � � � � � ��
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�

SF

s gFpFcpgcp ,,  (2.5)

where ps(F, g) is derived from the composition rate of trips having {F, g}, 
which is determined by using the smart card data. Then, the distribution of 
g for each c is calculated as the posterior distribution using the person trip 
survey and smart card data. This is described by,

  (2.6)

where, Ps(F) is the composition rate of trips with a vector of attribute F, 
determined by using the smart card system.

2.4 Estimation of Probability Functions

Each conditional probability function is obtained from maximum 
likelihood estimation. The probability trip purpose cÎC when a value 
of attribute, fkÎFk, k Î {a, s}, is given and expressed as p(fk ï c) = pcfk Îpkc. 
The probability distribution pkc is given by the solution of the following 
maximization problem:

  (2.7)
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where, A is the data set of person trip survey data, r = (ca, fka) is the data 
that is a subset of A and ca and fka are trip purpose and attributes. This 

 p(gic)= p(c,g)- ~p(cjF)ps (F,g) 
p(c) - ~ LJP (elF) Ps(F) 

FeS 
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maximization is converted to the following problem using a log-likelihood 
function and the method of Lagrange multipliers.
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Hence, the solution of this maximization is, 
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The probability of trip purpose  is also obtained in the same manner. The 
description of log-likelihood maximization is given by,
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where, p(c) = pc, pcÎPc is probability of the trip purpose cÎC. The solution to 
this problem is given by,
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3. EMPIRICAL ANALYSIS

This section describes an empirical analysis using the proposed method. 
The smart card data sets for two railway stations are employed. Section 3.1 
discusses the data sets. Section 3.2 describes the validation analyses that 
use a subset of the person trip survey data. By comparing the estimated 
trip purpose with the real trip purpose obtained using the person trip 
survey, this section examines the accuracy of estimation. Section 3.3 applies 
the proposed method to the real smart card data to find long-term changes 
in traveller usage of stations. 
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3.1 Data Sets

This study employs the data obtained at Station A and B. These target 
railway stations for the analysis are operated by a private company and 
are in the Osaka area, the second largest metropolitan area in Japan. 
Some railway lines run parallel to each other; hence, travellers can choose 
their train from several railway lines. However, the data for other railway 
companies were not available for this analysis. The proposed method is 
applied to the smart card transaction data, obtained from only one railway 
operator. 
 The contents of the transaction data records are described in Section 
2.1. Approximately, 10% of the passengers of the railway company were 
smart card holders. Since, the railway company allowed the use of the 
smart card data only for research purposes, the cards ID information was 
anonymized before the analysis. The privacy of the smart cardholders was 
strictly protected throughout this study. 
 Location of Station A is one of the major stations in the CBD in the 
Osaka area. The station has many railway connections to various districts, 
operated by more than one railway company. Location of  Station B in 
a residential district near several schools. The data for estimating the 
probability distributions of trip purposes were person trip survey data 
obtained in 2002 during the ‘4th Kei-han-shin Metropolitan Area Person 
Trip Survey.’ The data for the trips where passengers alight at each target 
station operated by the same railway company, used to estimate the model. 
The duration of stay was calculated using the alighting time and boarding 
time at each target station. 
 The person trip survey data for travellers who alighted at each target 
station contained records of 1,586 trips made by 1,576 travellers for Station 
A and 211 trips made by 208 travellers for Station B. The data set for each 
station was randomly divided into two subsets: estimation and validation 
data sets. The probability distribution p(c|F) of Station A estimated from 
1,095 trips and that for Station B estimated from 132 trips. The validation 
data consisted of 491 trips for Station A and 77 trips for Station B.
 Section 3.3 discusses the genuine smart card data observed in 20 
months from October 2007 to May 2009. All the person trip survey data 
for passengers alighting at the target stations were used to determine the 
models. This analysis used the smart card data of travellers who alighted 
at each target station at least once during the data collection period. The 
smart card data for Station A covered 7,074,768 trips made by 553,259 
travellers and that for Station B covered 667,132 trips made by 69,204 
travellers.
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Fig. 5. Number of trips at the target station correctly estimated by trip purpose

3.2 Validation with Person Trip Survey Data

This section examines the model of the proposed method using the 
validation subset of the person trip survey data described in Section 3.1. 
The data include both attributes c and F and are observed in a day. To 
confirm whether the trip purpose was correctly estimated using Equation 
(2.3), the estimate trip purpose is compared with the real trip purpose. 
 Figure 5 shows the estimation results of the trip purpose using 
Equation (2.3) and Equation (2.4). The number of the real trips is the one 
appeared in the validation data. The number of estimated trips was 
determined using Equation (2.4). The number of successfully estimated 
trips indicates the trips for which the actual purpose was the same as the 
estimated purpose according to Equation (2.3). The trip purposes in the 
figure are defined in Equation (2.1). For Station A and B, 86.2% and 85.5% of 
the trips were correctly estimated. More than 80.0% of the commuting trips 
and returning-home trips were correctly estimated. Especially, the correctly 
estimated trips of the commuters for Station A were 92.1%. In contrast, 
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relatively few leisure-or-business trips were correctly estimated. One of 
the possible reasons for this low accuracy is that these trips are few. The 
leisure-or-business trips observed in the estimation data set were no more 
than 26% of the total. For Station B, they were only 20.9%. 

3.3 Application to Data Mining of Smart Card Data

This section describes application of the data fusion method to actual 
smart card data observed over 20 months. The purpose of the analyses 
was to find the characteristics of day-to-day changes in the behavioural 
features. First, it discusses the day-to-day changes in the number of trips 
for each trip purpose as estimated using Equation (2.4). We conclude this 
section by showing the month-to-month changes in the distribution of 
the trip frequency as derived from Equation (2.6). This analysis shows the 
relationships between the estimated trip purposes c and trip frequency g 
determined from the smart card data. These relationships can illustrate the 
characteristics of changes in the demand because there is effect on changes 
in the number of trips by the change in the number of travellers as well as 
the number of trips made by each traveller.
 Figure 6 shows the day-to-day changes for Station A and B in the 
number of trips for each purpose as estimated using Equation (2.4). It 
describes the number of trips of each purpose,  for each day for 20 months. 
The number of commuting travellers alighting at Station A was twice 
that of the “returning-home” or “leisure-or-business” travellers because 
location of Station A is in the CBD. The commuting trips accounted for 
50.6% of the total, the leisure-or-business trips for 22.8% and the returning-
home trips for 26.6%. On the other hand, for Station B, the returning-home 
travellers were more than twice the commuting travellers because location 
of this station is in the residential district. The shares of the commuting 
trips, leisure-or-business trips and the returning-home trips of Station B 
were 29.0%, 20.5% and 50.5% respectively.
 Overall, the number of trips increased during the observation period. 
The average number of trips in October 2008 for stations A and B increased 
by 35.2% and 46.7% compared with those in October 2007.  Although we 
cannot distinguish whether the changes were caused solely by variations 
in demand or in the composition rate of smart card holders, several 
different characteristics of changes were observed corresponding to trip 
purposes and stations. For example, the leisure-or-business trips for Station 
B significantly increased in March 2008. The number of leisure-or-business 
trips in October 2008 increased by 76.5% compared with that in October 
2007. This percentage is larger than the average increase for other trip 
purposes. This was probably due to the opening of a new shopping mall 
near the station.
 For Station A, large variations in the returning-home trips were 
observed in the summer. The large variations coincided with the 
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days when baseball games were held. This might be due to travellers 
transferring to other railway lines on their way home from the stadium at 
other station in the target line. On 94% of the days when baseball games 
were held, the number of travellers between 8 p.m. and 9 p.m. increased by 
20% compared to the average. On the other hand, the number of travellers 
on other days did not exceed 1.2 times of the average. By using the Welch’s 
t test, the estimated t-value was 14.1; that is, the number of travellers on 
the days of the baseball games was  larger than the usual. This result was 
among those used to find events from the data without presumption of 
the events. The ability to find the events without presumption will help to 
know  the period and stations affected by the events before conducting the 
detailed surveys.
 There was a large decline in the commutes during the summer and 
New Year holiday seasons for Station A; the number of trips was less than 
60% of the average on 12 days. However, for Station B, a decline in the 
commutes during school holidays is found, which was larger decline than 
ordinary holidays. For Station B, the number of trips was less than 60% of 
average on 27 days.
 Figures 7 and 8 show distribution of the trip frequency for commuting, 
leisure-or-business and returning-home trips, estimated using Equation 
(2.6). These results show time series changes in trip purposes, which are 
difficult to find from person trip survey data. The vertical axis shows the 
number of the days per month where each traveller made trips from the 
station. The horizontal axis shows the month. The grey scale indicates the 
composition rate for the number of days in each month when the travellers 
used the station. These figures show the month-to-month changes in the 
trip frequency for each trip purpose. 
 Most commuting travellers made their trips using Station A on all the 
weekdays. However, the frequency of commutes decreased in the holiday 
seasons, i.e., January, August and December. Most of the commuting 
travellers made trips in December 2007, January 2008 and August 2008 
on 19, 18 and 18 days. These figures show the variability of the frequency 
tended to increase while the frequency itself decreased in these seasons. 
This could be confirmed using the composition rate on the day when 
the most commuting travellers made trips. The composition rates in 
December 2007, January 2008 and August 2008 were 20.2%, 19.6% and 
12.9%, respectively, even though the average rate in months except January, 
August and December was 22.7%. For Station B, the frequency of commutes 
clearly decreased in the holiday seasons compared with that for Station A. 
The frequency of commutes seemed to decrease by school holidays. These 
results imply that the large decrease in the number of commutes during 
holiday seasons in Figure 6 caused by a decrease in the trip frequency. On 
the other hand, most leisure-or-business travellers were recorded once in a 
month at either station. This result implies that the changes in the number 
of the leisure-or-business trips were caused by changes in the number of 
travellers.
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4. CONCLUSION

The features of smart card data, i.e., precision, continuity and long-term 
observation enabled us to analyse the dynamic characteristics of travel 
behaviour. However, the smart card data include fragmental information 
for travel behaviour data. In order to quantitatively complement the 
behavioural features to the smart card data set, we used a data fusion 
method, which combines the smart card data with person trip survey data.
 The empirical analysis in Section 3 employed data obtained from two 
stations in the CBD and residential districts of the Osaka metropolitan 
area in Japan. Validation using a subset of the person trip survey data, as 
shown in Section 3.2, demonstrated that more than 80.0% of commuting 
trips and returning-home trips were correctly estimated for any of the 
stations. The empirical data mining analysis using the real smart card data 
set in Section 3.3 showed that the proposed method was capable of helping 
us to find and interpret the behavioural features observed in the smart 
card data. The proposed method illustrated the share of trip purposes 
among travellers and the relationship between the trip frequency and the 
trip purpose, which could not be obtained from either smart card data or 
person trip survey data alone. The method was applied to the data mining 
analysis of the smart card data observed for 20 months, obtained from the 
two stations. The features in the long-term changes for each trip purpose 
could be illustrated and quantitatively confirmed by using the estimated 
trip purposes. 
 By applying the proposed method to the continuous monitoring of the 
passengers, transport operators can make assumptions about the cause of 
behavioural changes. For example, this study represented the user groups 
according to the trip purposes, which contributed to the change in demand. 
Continuous monitoring will help the operators to find the amount of effect 
as well as the spreading speed as a result of policy changes. It will also 
help to find suitable survey areas, targets and time periods for conducting 
the surveys. For example, as shown in the empirical analysis in this study, 
large variations were observed in the returning-home trips during the 
summer for Station A but not for Station B. Owing to this result, Station B 
could be excluded when a transit agency plans detailed surveys on these 
trips. This will also reduce the survey cost. In future work, the proposed 
method will be applied to the real assessment of specific operational 
improvements, fare revision, TDM schemes and transit planning to confirm 
whether these measures really affect the traveller’s segment in the way 
expected before implementing of measures.
 When the composition rate of a smart cardholder is low, the data 
is used to determine user segments that often use smart cards. If 
the composition rate becomes high enough, the data could be used 
for analysing the demand of public transport. Especially, when the 
dependency on public transport in an area is high, the data include more 
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trip-chains made by public transport. Such data may enable us to analyse 
places of activity and changes in following years. The characteristics of 
activities might be analysed  to socio-demographic factors obtained from 
other surveys, such as age composition. 
 Regarding methodological aspects, this study employed the Naïve 
Bayes classifier for which the required data is relatively less than that for 
other machine learning methodologies. The method was suitable for data 
fusion of smart card data with person trip survey data because of the 
limited data. If larger scale and richer behavioural data than person trip 
survey data, such as advanced tracking survey data (e.g., Asakura and 
Hato 2004; Cottrill et al. 2013; Kusakabe et al. 2015), becomes available, 
the estimation accuracy of minor trip purposes will improve. For such 
advanced data, the Naïve Bayes classifier would not be suitable because 
it cannot describe correlations between variables. Hence, more advanced 
estimation methodologies such as a decision tree, Bayesian network, and 
support vector machine might be used.
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A B S T R A C T
 Transit agencies are under constant pressure to increase ridership.
 Many system changes and new technologies, such as making real-time
 information available, have the potential to increase ridership. However,
 measuring traveller response to system changes is notoriously difficult.
 The objective of this chapter is to develop a new method to quantify
 changes in the number of transit trips due to system changes, and the
 method is applied to real-time information as an example. The method
 combines smart card data with survey responses to study the behavior
 of individual riders before and after the availability of real-time
 information. First, three conditions are imposed on the joint survey/smart
 card dataset to assess if each record accurately reflects an individual’s
 travel behavior. The first condition necessitates that the respondent
 began using real-time information in the appropriate timeframe and had
 the smart card sufficiently long for the before-after analysis. The second
 condition tests if one smart card accurately represents one traveller, and
 the third condition verifies that the smart card record corresponds to
 the respondent’s stated travel behavior. Then, difference of means tests
 and regression analysis are used to assess changes in monthly transit
 trips between real-time information users and non-users. In this case,
 the results suggest that real-time information did not have a significant
 effect on the number of transit trips in the study; however, the final
 sample size was small. The primary contribution of this research is
 the method, which could be repeated to evaluate other transit system
 changes or technologies.
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1. INTRODUCTION 

Because public transportation ridership is affected by numerous factors, 
many previous studies have had difficulty isolating changes in transit 
trip-making caused by a particular transit system change, such as 
the availability of new information and communication technologies. 
Therefore, the objective of this chapter is to develop a new method using 
smart card data to quantify differences in transit trips over time due to 
system changes. While smart card systems are installed for the purpose of 
revenue collection, the data created from these systems provide a valuable 
source of information about transit travel over time. Smart card data can 
be used to assess transit trips before and after a system change; however, 
in many cases, additional information is needed from the rider beyond 
the data available in the smart card system. The specific case used in this 
research to demonstrate the method is the launch of a mobile application 
that provides real-time information to transit riders. In order to understand 
which smart card users are also real-time information (RTI) users, the 
smart card data are combined with the responses from a web-based 
survey asking about use of RTI. To link the two datasets, a survey question 
requested the unique smart card number of each respondent. This method 
was applied to the case study of Atlanta, Georgia.
 This chapter proceeds as follows. First, prior research about the use of 
smart card data to study transit travel behavior is reviewed. The next section 
provides background information on Atlanta, which is where the data 
collection and analysis were conducted. Then, the methodology is described 
and three conditions are applied to the combined smart card/survey dataset. 
This is followed by the application of the method to evaluate the impacts of 
RTI on transit travel and last, areas for future research and conclusions are 
presented.

2.  LITERATURE REVIEW

This section provides a brief literature review on the uses of smart card 
data to study travel behavior. Although smart card systems are installed 
for the purpose of revenue collection, they also provide a rich source 
of data about transit use (Bagchi and White 2005; Pelletier et al. 2011). 
Passengers with contactless smart cards pay fares by “tapping” their cards 
on fareboxes or faregates. With each tap, a record is created that includes 
the date and time, the type of transaction (boarding, transfer, etc.), fare 
type, route/station ID, route/line direction, a unique card ID number and 
possibly other things (Pelletier et al. 2011). Some transit agencies also 
allow smart card users to register their cards, typically for the purpose 
of refunding the value of lost/stolen cards or for using autoload features; 
registration can include a limited amount of personal information. 
 A growing body of research utilizes transit smart card data and 
Pelletier et al. (2011) provide a literature review of the uses, which 
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they divide into three groups: operational, tactical and strategic-level 
applications. Operational-level studies use smart card data to measure 
various transit supply-and-demand and performance indicators; tactical-
level studies commonly focus on service adjustments; and strategic-level 
studies typically relate to long-term network planning, demand forecasting 
and travel behavior. In this case, a strategic-level analysis of travel behavior 
was conducted.
 Smart card data have some noteworthy advantages for studying transit 
travel behavior. Transit providers have found it difficult to examine travel 
behavior over long timeframes due to a lack of suitable temporal data 
(Bagchi and White 2005). In contrast, smart card records can be stored 
for years and accessed as needed over time. Numerous prior studies 
have taken advantage of the longitudinal nature of smart card records to 
study the travel patterns of transit riders at the individual level. An early 
example of this is a study by Morency et al. (2007), who analysed 277 
consecutive days of travel on a Canadian transit network and used data 
mining techniques to study the temporal variability of individuals’ transit 
travel patterns. Another relevant example is an impact analysis of the East 
London Line, which was a major public transport expansion project that 
opened in 2010 (Ng 2011). This study used Transport for London’s smart 
card data to create a panel of riders and study the changes in their transit 
travel behavior patterns due to the opening of this transit line. Similar 
to this prior study, this analysis will also conduct a before-after study of 
transit travel behavior; however, it will focus on transit information rather 
than infrastructure changes. 
 Another advantage of smart card data is that it is automatically 
collected and may not be subject to some biases commonly found in self-
reported travel data. Unlike travel surveys, the smart card record does not 
require the traveller to recall or record information about his or her trip 
patterns, and therefore, could lessen errors in recalling travel behavior 
(Chapleau et al. 2008). 
 A major disadvantage of using smart card data to study behavior is a 
lack of socioeconomic attributes about the cardholder (Pelletier et al. 2011). 
While some smart card systems collect a limited amount of registration 
information (Utsunomiya et al. 2006), most lack basic demographic 
information about the cardholders and none include highly specific 
attributes, such as the usage of information technologies like mobile 
applications.  
 One method to obtain additional data about cardholders is to link 
smart card data with survey responses by asking for the respondent’s 
smart card number in the survey questionnaire. This was recently done 
with London’s household travel diary (Riegel and Attanucci 2014), a transit 
origin-destination survey conducted in Santiago, Chile (Munizaga et al. 
2014), and a stated preference survey evaluating transit loyalty programs 
in Shizuoka, Japan (Nakamura et al. 2016). For this research, the procedure 
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of asking for the smart card number was used in a survey that also asked 
questions about utilization of real-time information, and this joint smart 
card/survey dataset was then used to evaluate transit travel over time 
without relying on self-report data to measure trips. 

3.  BACKGROUND 

Atlanta was selected as the location for this analysis to demonstrate the 
proposed methodology. The transit agency in Atlanta is known as the 
Metropolitan Atlanta Rapid Transit Authority (MARTA), and the smart 
card system is known as Breeze. Fare media include a plastic contactless 
Breeze Card, which is most commonly used, and a contactless paper 
Breeze Ticket, which is primarily used for student tickets, group tickets 
and special events. A single ride can also be paid directly with cash on 
buses (MARTA 2014). According to a recent system-wide survey of MARTA 
riders, over 99% of riders have one or more plastic Breeze Cards (MARTA 
2013).  
 The Breeze system requires tap-in on buses and both tap-in and tap-
out on MARTA rail, but this study includes tap-in data only. MARTA riders 
have the option of registering their Breeze Cards for balance protection and 
reloading value online; personal information from these processes was not 
available for this analysis. 
 Notably, the Breeze Card system was launched in 2006 (Hong 2006), 
which means that there are nearly ten years of data available to study 
transit system changes. The system change under consideration in this 
study is real-time information (RTI) through mobile applications (“apps”), 
which first became available in late 2013. Therefore, the intervention under 
study occurred significantly after the implementation of the smart card 
system, which is necessary for the before-after analysis to evaluate the 
impacts of RTI on travel behavior using this data source. 

4.  DATA COLLECTION 

To assess which MARTA riders use RTI apps, which was the invention 
under evaluation, a short survey was conducted. The data were collected 
via a web-based survey, which allowed for questions with images (e.g. a 
Breeze Card with the smart card number circled and screenshots of RTI 
apps). The reason for using a web-based survey (as opposed to paper or 
telephone surveys) was because RTI was primarily accessible via web-
enabled devices; therefore, in order to maximize the number of potential 
respondents who had used RTI, the survey was conducted online.
 Responses were collected for one week in early May 2014. Participants 
were primarily recruited through online channels, including MARTA’s 
social media, the Atlanta Regional Commission email list and other similar 
email lists. Flyers were also distributed in a small number of train stations 
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to advertise the survey. An incentive of a $5 Starbucks gift card was 
provided for completing the survey. 

4.1 Survey Content 

The survey was titled “Georgia Tech’s Survey of Technologies Used by 
MARTA Riders” to recruit both users and non-users of RTI, and the survey 
instrument was divided into five sections. The first section included 
questions about paying for transit, such as use of a Breeze Card and the 
respondent’s Breeze Card number. The second section contained travel 
behavior questions, and the third part included questions about mobile 
RTI. The fourth section asked a few questions about recent MARTA service 
changes. The last section was composed of socioeconomic questions, 
including changes during the previous year. Detailed personal information 
(such as email or home address) was not collected to protect the anonymity 
of participants at MARTA’s request. Last, the survey instrument was 
reviewed by a dozen Georgia Tech students/staff and a MARTA customer 
research employee before dissemination.

4.2 Responses

A total of 669 participants entered the online survey and of these, 651 
respondents answered the first question, which asked how they typically 
pay for MARTA. Of the 651 respondents, 11 respondents (1.7%) said that 
they use a paper Breeze Ticket, 7 (1.1%) stated that they pay using cash and 
1 respondent (0.2%) was not sure of the fare media that s/he typically uses. 
This left 632 survey respondents who use one or more Breeze Cards and of 
those, 538 provided a smart card number. The smart card numbers were 
provided to MARTA, and 497 matched active Breeze Card numbers. Three 
additional participants were removed due to restrictions (i.e. under age 18), 
so the remaining sample size was 494, or 73.8% of all those who entered the 
survey. Then, the smart card records for the 494 eligible participants were 
merged with the corresponding survey responses using the smart card 
number. 
 Because this survey was collected with non-probability sampling 
methods, questions about socioeconomic status and basic travel behavior 
were asked to understand the representativeness of the sample. Table 
1 shows summary statistics of these survey questions for the 494 eligible 
participants and then compares them to MARTA’s most recent system-wide 
survey (MARTA 2013). As can be seen in the table, the respondents to this 
survey differed from typical MARTA riders in a few noteworthy ways; this 
study includes more participants who were Caucasian, had higher income 
levels and took fewer transit trips per week than typical MARTA riders. 
 Last, it should be noted that smart card records were aggregated to the 
number of trips per day per mode (bus/rail) by MARTA and the complete 
trip history (i.e. time-stamped tap-in locations) was not provided as a 
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safeguard to protect the privacy of respondents at MARTA’s request. Also, 
to ensure that the records from the Breeze Card database were accurate, the 
smart card records of a few Georgia Tech researchers were requested and 
reviewed. 

Table 1. Characteristics of study participants compared with system-wide MARTA riders

 Study Participants MARTA 
Riders*

Category Variable Count % Column % Column
Total All Respondents 494 100% 100%

Gender
Male 246 49.8% 50.7%
Female 232 47.0% 49.3%
No Answer 16 3.2% -

Age

Age 18-24 (0-24 for all MARTA riders**) 62 12.6% 23.3%
Age 25-34 229 46.4% 25.9%
Age 35-44 113 22.9% 17.5%
Age 45-54 56 11.3% 18.4%
Age 55-64 19 3.8% 11.8%
Age 65 and older 3 0.6% 3.1%
No Answer 12 2.4% -

Annual 
Household 
Income

Under $10,000 20 4.0% 19.9%
$10,000 to $19,999 28 5.7% 19.2%
$20,000 to $29,999 48 9.7% 20.5%
$30,000 to $39,999 34 6.9% 12.6%
$40,000 to $49,999 40 8.1% 7.2%
$50,000 to $74,999 83 16.8% 9.1%
Over $75,000 212 42.9% 11.4%
No Answer 29 5.9% -

Spanish, 
Hispanic or 
Latino Descent

Yes, Hispanic 20 4.0% 6.4%

No, not Hispanic 461 93.3% 93.6%
No Answer 13 2.6% -

Ethnicity

American Indian or Alaska Native 2 0.4% 0.2%
Asian (includes Asian Indian) 40 8.1% 3.0%
Black or African American 57 11.5% 76.3%
White 368 74.5% 15.4%
Other 12 2.4% 5.1%
No Answer 15 3.0% -

Number of One-
way MARTA Trips 
in the Last Week 
(Bus and Train)

0 to 4 trips 291 58.9% 34.2%
5 to 8 trips 48 9.7% 17.9%
9 or more trips 153 31.0% 47.9%
No Answer 2 0.4% -

 * System-wide statistics from MARTA’s FY13 Quality of Service Survey Annual Report.
 ** Questions not equivalent. MARTA’s system-wide survey included respondents age 0-18, but 

this study did not. 
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5.  METHODOLOGY

This section describes the method used to evaluate the combined smart 
card/survey dataset. First, the use of the RTI, which was the intervention 
under evaluation, was considered. Next, three conditions were investigated 
to assess if each record in the smart card/survey dataset accurately reflects 
an individual’s travel behavior. The first condition necessitates that the 
person began using RTI in the appropriate timeframe and had the smart 
card sufficiently long for the before-after analysis. The second condition 
tests if one smart card represents one traveller. The third condition verifies 
that the smart card record corresponds to the respondent’s stated travel 
behavior. 

5.1  The Intervention: Availability of Real-Time Information

To assess the intervention, which was the availability of RTI, the survey 
contained questions in which the respondent was presented with images of 
the most popular RTI apps in Atlanta and was asked if s/he has used RTI. A 
total of 302 of the 494 eligible participants (61%) used one or more RTI apps, 
and they compose the user group. Respondents who stated that they had 
not used one or more RTI apps were categorized as non-users. 

5.2  Condition 1: Panel Eligibility 

The first condition imposed on the joint smart card/survey dataset was that 
of panel eligibility. For the before-after analysis, a month before the main 
release of RTI in Atlanta (April 2013) and the same month one year later 
(April 2014) were selected because the intervention (the launch of various 
RTI apps) occurred at different times in 2013 and 2014. Since there was a 
small possibility that respondents began using RTI during the “before” 
period (April 2013 or earlier) or in the middle of the “after” period (April 
2014), respondents were asked to recall when they began using RTI. 
Similarly, to ensure that the smart card was active for the entire study 
period, respondents were asked to recall when they acquired their smart 
card. 

5.2.1  Condition 1A: Panel Eligibility of the Intervention 

First, respondents were asked to recall when they started using an app 
with RTI (i.e. the intervention), and the results are shown in Table 2. Most 
respondents (201 RTI users) began using the apps between May 2013 and 
March 2014 and were deemed panel eligible. Another 36 could not recall 
when they began using RTI and 2 did not answer the question, and it 
was assumed that they began within the last year. Therefore, a total of 
239 respondents were deemed panel eligible RTI users, and they could 
be compared to the 192 non-users. This resulted in a sample size of 431 
respondents meeting Condition 1A.
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5.2.2  Condition 1B: Panel Eligibility of the Smart Card

Respondents were asked if they got their Breeze Card within the last year 
or more than a year ago, and the results are shown Table 3. Of the 431 
respondents meeting Condition 1A, a total of 264 respondents (61%) stated 
that they have had their Breeze Card for more than a year. Another 41 
respondents (10%) could not recall when they acquired their Breeze Card, 
and it was assumed that these respondents were also panel eligible. This 
resulted in a total of 305 participants who met Condition 1B. These survey 
responses were also compared to the smart card record for April 2013, 
which is shown in Table 3. Notably, this condition excludes any person(s) 
who began riding transit within the last year, since they did not have a 
Breeze Card a year ago.

Table 2. Condition 1A (Panel eligibility of the intervention)

Survey Question: When did you start using an app with RTI? Meet 1A Total Percent
Began using RTI before April 2013 No 37 7%
Began between May 2013 and March 2014 Yes 201 41%
April 2014 or later No 26 5%
Cannot remember Yes 36 7%
No Answer Yes 2 0%
RTI User Total 239 302 61%
Non-users Yes 192 39%
Grand Total 431 494 100%

Table 3. Condition 1B (Panel eligibility of the smart card)

Survey Question: 
When did you get your 
Breeze Card?

Meet 1B
Breeze Card Data

No Trips in 
April 2013

1+ Trips in 
April 2013 Total Percent

Within the last year No 111 15 126 29%

One year or more ago Yes 111 153 264 61%

I’m not sure Yes 29 12 41 10%

Total 305 251 180 431 100%

5.3 Condition 2: Completeness and Uniqueness (One Smart  
 Card = One Person)

Next, each record was tested for completeness and uniqueness. A Breeze 
Card record was considered complete if the respondent did not use any 
other form of payment when riding MARTA; consequently, all of the 
respondent’s transit trips would be captured in the smart card record. A 
Breeze Card was considered unique if it was only used by a single person. A 
Breeze Card record would not be unique if it is shared with others because 
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this represents the travel behavior of more than one person. If both the 
conditions of completeness and uniqueness are met, it was assumed that 
one smart card represents one person. These conditions were assessed 
using the responses to three survey questions.

5.3.1 Condition 2A: Complete with One Breeze Card

The first survey question pertaining to completeness asked if a respondent 
had one Breeze Card or two or more Breeze Cards. As is shown in Table 
4, 86 (71+15) respondents who met Condition 1B have two or more Breeze 
Cards, and therefore, their smart card records may not be complete. The 
remaining 219 (193+26) participants were assumed to meet Condition 2A. 

5.3.2 Condition 2B: Complete with No Other Fare Media

As a second measure of completeness, all participants were asked if they 
pay for MARTA in other ways (such as cash or a paper ticket). Table 4 
shows that a total of 193 participants who met Condition 2A use only their 
Breeze Card and were deemed complete. 

5.3.3 Condition 2C: Unique

Finally, to understand uniqueness, survey respondents were asked if they 
share their Breeze Card, and to what extent they share their card (e.g. 
occasionally, often). A total of 159 respondents who met condition 2B also 
met the uniqueness condition because they stated that they never share 
their single Breeze Card (Table 4). Therefore, it was assumed that the smart 
cards of those 159 respondents accurately represent the transit travel of 
only those respondents. 

Table 4. Conditions 2A, 2B and 2C (Completeness and uniqueness)

Survey Question: Unique

Survey Questions: Complete

1 Breeze Card 2+ Breeze Cards

TotalUses only 
Breeze 
Card

Uses Cash 
or Ticket

Uses only 
Breeze 
Card

Uses Cash 
or Ticket

I never share my Breeze Card (1 or 2 cards) 159 20 42 8 229

I have shared my Breeze Card once or twice 25 4 14 3 46

I occasionally share my Breeze Card 3 2 13 4 22

I often share my Breeze Card 4 0 1 0 5

I’m not sure 1 0 0 0 1

Other 1 0 1 0 2

Total 193 26 71 15 305
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5.4 Condition 3: Congruence (That Smart Card = That Person)

Last, the condition of congruence was assessed by comparing each smart 
card record to a self-reported travel behavior survey question to ensure 
that the smart card record represents that particular person. The purpose 
of this was to identify errors when the respondent entered his or her smart 
card number in the survey or potential errors in the Breeze Card system. 
 The specific method to assess congruence was comparing the number 
of MARTA train trips made in the last week from the smart card record 
to a self-reported survey question. Each survey respondent was instructed 
to begin counting train trips from the previous day and continuing back 
seven days. Because each online survey response included a time and 
date of completion, the self-reported number of MARTA train trips was 
compared to the same seven days of the smart card record. Respondents 
were also instructed to count train-to-train transfers as single trips, but 
transfers that involved bus modes (bus and train) were counted separately. 
This was to ensure that the number of “taps” in the smart card database 
aligned with self-reported trips, since bus-to-train transfers involving 
tapping the smart card at the transfer point whereas train-to-train transfers 
do not (since one stays within the fare gates). 

5.4.1 Condition 3A: Closely Congruent

As is shown in Table 5, 135 respondents (of those who were met Condition 
2C) had self-reported trips that matched the respective smart card trip 
history within two train trips. These survey responses were deemed to be 
“closely congruent” with the respective smart card. “Close” congruence 
was considered because self-reported travel behavior questions are often 
subject to error, particularly recall bias in which respondents cannot 
correctly remember their travel (Stopher 2012). There is also the possibility 
that a transaction was missing from the smart card dataset, since prior 
research has identified this as a possible flaw with smart card data 
(Utsunomiya et al. 2006).

5.4.2  Condition 3B: Perfectly Congruent

Table 5 shows that 100 respondents (of those who met all other conditions) 
had survey responses that perfectly matched the respective smart card 
record and were deemed “perfectly congruent.” 

5.5 Summary

After imposing conditions on the joint survey/smart card dataset, 100 (20%) 
of the 494 eligible participants were found to meet all three conditions. 
Table 6 shows the sample size as each condition was applied. Since the 
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Table 5. Conditions 3A and 3B (Closely and perfectly congruent)

Survey Question: Number of 
Train Trips in the Last 7 Days

Breeze Card Data: Number of Responses

Closely Congruent Perfectly Congruent  

Count % Total Count % Total Total

0 trips 63 100% 62 98% 63

1 trips 11 100% 7 64% 11

2 trips 17 94% 8 44% 18

3 trips 0 – 0 – 0

4 trips 10 77% 5 38% 13

5 trips 2 50% 0 0% 4

6 trips 0 0% 0 0% 1

7 trips 0 0% 0 0% 2

8 trips 4 57% 3 43% 7

9 trips 0 – 0 – 0

10 trips 16 76% 7 33% 21

11 trips or more 12 63% 8 42% 19

Total 135 – 100 – 159

Percent Total 85% – 63% – 100%

Table 6. Conditions and sample sizes

Number Condition Sample Size Percent Total

– Full survey/smart card data set 494 100%

1A Panel eligibility of the intervention 431 87%

1B Panel eligibility of the smart card 305 62%

2A Complete with one breeze card 219 44%

2B Complete with no other fare media 193 39%

2C Unique 159 32%

3A Closely congruent 135 27%

3B Perfectly congruent 100 20%

sample size decreased substantially, all conditions were considered in the 
following analysis.

6.  EVALUATION OF THE INTERVENTION

Next, the joint smart card/survey dataset was used in a before-after 
analysis of the intervention, which was the availability of RTI in this 
example. This analysis is divided into two parts. The first section presents 
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simple statistics to compare the number of transit trips by RTI users with 
non-users, and the second section uses regression analysis to control for 
other factors that may be influencing transit travel. 

6.1 Difference of Mean Differences

The first analysis compares the number of transit trips from the smart 
card data before and after the availability of RTI for users and non-users. 
The period of analysis was four weeks in April 2013 and April 2014 
beginning with the first Tuesday of the month so that there were the same 
number and type of days in each period (i.e. 4 Mondays, 4 Tuesdays, etc.). 
Conveniently, April also includes typical school trips (the local universities 
are all in session) and no major holidays. 
 Table 7 shows the mean (M), median (Med), standard deviation (SD), 
minimum (Min), and maximum (Max) number of transit trips for the 
four weeks in April 2013 and April 2014 broken down by RTI users versus 
non-users. The difference between April 2013 and 2014 was calculated for 
each individual, and this difference was used in a difference of means test 
between RTI users and non-users. The results are shown for the entire 
dataset (n=494) in the leftmost column of Table 7. Each condition (1A to 
3B) was progressively applied moving toward the right of the table, and a 
comparable analysis was conducted. 
 When the full dataset (n=494) is considered, the results suggest that RTI 
users increased transit trips significantly more than non-users from April 
2013 to April 2014 (mean differenceRTI-users=11.7 trips, mean differencenon-users=4.9 
trips, two-tailed p-value=0.0006). There are similar findings when Condition 
1A (Panel Eligibility of the Intervention) is applied. When Conditions 
1B to 3B are applied, the mean difference in trips from April 2013 to 2014 
for the RTI user group is still a greater increase than that of the non-user 
group; however, this difference is not statistically significant. This could be 
because the more filtered datasets have smaller sample sizes and therefore 
have larger variances of the estimator, making it more difficult to detect a 
difference. It may also be because RTI users took, on average, more trips in 
April 2013 than non-users, which suggests that those who use transit more 
were more likely to adopt RTI. Difference of means tests were also run for 
each mode (bus, rail) separately, and similar results were found in which 
RTI was only significant for the full dataset and Condition 1A. 
 Two important notes should be made about this analysis. First, when 
examining the median difference in trips (as opposed to the mean), there 
were limited changes from April 2013 to April 2014 regardless of which 
conditions were applied. Second, system-wide MARTA ridership over 
the study period was relatively stable; there were 129.9 million unlinked 
MARTA trips in fiscal year 2013 and 129.1 million in fiscal year 2014 
(MARTA 2015). Also, system-wide ridership figures for only the months of 
interest (April 2013 and April 2014) reveal a slight decrease in ridership over 
the study period (11.5 million unlinked passenger trips in April 2013 versus 
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10.9 million trips in April 2014). Therefore, the limited change in median 
number of trips from April 2013 to 2014 in this study appears consistent 
with system-wide MARTA ridership trends.

6.2 Regression Analysis

Since changes in an individual’s monthly transit trips could be attributed 
to factors other than the intervention (RTI), survey respondents were 
asked a series of retrospective questions to understand possible changes 
that may have influenced their travel behavior between April 2013 and 
2014. This included questions about changes in household size, automobile 
ownership, job location and household location over the last year. 
Additionally, a few questions about awareness of MARTA’s minor service 
changes that occurred in December 2013 were included in the survey 
instrument, since this could have also caused changes in transit travel 
during the study period. The results of these questions were then included 
in a regression model to assess the impact of the intervention while 
controlling for these other factors. The dependent variable in the regression 
was the difference in monthly trips (precisely, four weeks) from 2013 to 2014 
from the smart card record, and the independent variables included the 
previously mentioned retrospective survey questions, as well as standard 
socioeconomic characteristics (e.g. ethnicity, age, etc.). 
 Various regression models were assessed, and the models selected for 
presentation are shown in Table 8. These models contain only variables 
that were consistently significant across datasets or significant in the 
dataset that met the congruence conditions (3A and 3B). The variable 
of interest, RTI, was only significant in the regression models using the 
full dataset and the dataset in which Condition 1A was met. When the 
additional conditions were imposed, RTI use was no longer significant. 
The other variables that were consistently significant as the sample size 
decreased were having a valid driver’s license, which was associated with 
a decrease in MARTA trips from 2013 to 2014, and being African American, 
which was associated with an increase in transit trips. However, both of 
these variables were to some extent collinear with the intercept: only 9% 
of the final sample was African American and 96% had a driver’s license. 
Two other variables were significant in some of the models. Increasing the 
number of cars in a household during the previous year was associated 
with a decrease in MARTA trips in the full dataset and when condition 
1A (Panel Eligibility of the Intervention) was applied. On the other hand, 
awareness of MARTA’s recent (minor) service change was associated 
with an increase in trips in the models when the congruence conditions 
(3A and 3B) were applied. This suggests that the minor service changes 
in December 2013 positively impacted the number of trips riders made 
on MARTA, although further study of this is recommended. Last, the 
goodness of fit was limited for all models: there was an R-squared of 0.15 
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for the full dataset and this increased to 0.30 when all of the conditions (1A-
3B) were applied. 

7. AREAS FOR IMPROVEMENT AND FUTURE RESEARCH

This section discusses potential improvements and challenges for future 
research. First, the survey responses were collected via non-probability 
sampling and were not representative of all MARTA riders. This survey 
substantially differed from MARTA’s last system-wide survey in three 
ways: there were more participants who were Caucasian, had higher 
income levels, and took fewer transit trips per week than typical MARTA 
riders (MARTA 2013). Although regression analysis was performed to 
help control for these differences, use of this methodology to test future 
transit system changes should use probability sampling to increase the 
generalizability of descriptive statistics. 
 Another possible improvement is incorporating assumptions 
pertaining to the “shrinking” sample size in the sampling plan. The 
original dataset began with 494 records, but this decreased to 100 (20%) 
after strictly imposing the three conditions. Future applications of this 
method should increase the sampling rate in anticipation of this.
 A third future enhancement is including a survey question asking if a 
person began riding transit in the last year. New riders were not considered 
in this analysis, since these respondents did not have smart cards in the 
“before” period (Condition 1B). However, it is possible that new riders 
began using transit because of the availability of RTI, which was the 
intervention under evaluation. 
 Another improvement pertains to the condition of congruence, which 
compared the number of train trips in the last week from the survey to the 
smart card records. Survey questions are often subject to error, particularly 
recall bias in which respondents cannot correctly remember their travel 
(Stopher 2012). Perhaps a better measure of congruence is “home” station, 
since respondents are likely able to recall this more easily. Additionally, 
requesting a respondent’s smart card number twice to avoid unintentional 
errors when entering the number could improve congruence condition 
tests. 
  A potential challenge for future research is consistency using smart 
card “taps” to measure transit trips over time if there are fare policy 
changes. This study was conducted during a timeframe when there were 
no known changes in fare policy, but shortly afterward, MARTA changed 
their bus open door policy at transfer locations, which could impact the 
number of “taps” in future analyses.
 Last, a noteworthy challenge to applying this methodology more 
broadly is privacy concerns on behalf of the transit agency regarding 
smart card data (Dempsey 2008). Transit agencies may be hesitant (or 
completely unwilling) to share their data with researchers, particularly if 
they have stringent privacy policies. For this research, the transit agency 
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was willing to share data in an aggregated form (smart card taps per day); 
however, there are numerous additional analyses that could be performed 
if complete smart card trip histories (including time-stamped tap-ins by 
station/route) are made available to researchers, such as assessing changes 
in transit usage by time of day or by frequency of service. 

8. CONCLUSIONS

In this chapter, a methodology was developed to combine smart card data 
with survey responses to evaluate changes in transit travel over time. This 
method was applied to an empirical analysis of real-time information 
(RTI) in Atlanta. First, three conditions were imposed on the joint smart 
card/survey dataset, which reduced the sample size to 20% of the original 
dataset. Then, difference of mean tests and regression analysis were used 
to compare changes in monthly transit trips from April 2013 to April 2014 
between RTI users and non-users. The results for the larger initial dataset 
suggest that RTI was associated with an increase in transit trips. However, 
when the conditions were applied and the sample size was reduced, the 
difference in trips was not significantly different between RTI users and 
non-users. This may because RTI users took, on average, more trips in April 
2013 than non-users, which suggests that those who use transit more were 
more likely to adopt RTI. 
 A primary contribution of this research is the method to combine 
smart card data with survey responses to evaluate changes in transit 
travel. Traditional surveys lack a method of accurately measuring travel 
over extended periods of time (unless surveys are repeated) and the smart 
card dataset advantageously provides a record of transit trips needed for 
before-after or panel analyses. Similarly, the survey instrument can be 
used to gather socioeconomic information and other characteristics of the 
respondent, which would otherwise be unavailable in a smart card dataset. 
This methodology could be used to evaluate other transit system changes 
– beyond RTI – and more broadly applied for transit marketing and 
travel behaviour analyses in the future. Planners and market researchers 
conducting regular transit customer satisfaction surveys could include a 
few additional questions about smart cards – particularly the smart card 
number – and apply this methodology to evaluate the impacts of other 
system, policy, or planning changes on transit travel. 
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A B S T R A C T
 This chapter discusses whether it is possible to use smart cards, not
 only for better understanding of supply and demand patterns but also
 for directly influencing travel behaviour. For this, a case study with
 smart card data obtained from Shizuoka, Japan is conducted. The
 smart card belongs to Shizutetsu group, a private company operating
 transport services as well as retail facilities. The group introduced a
 point loyalty scheme rewarding frequent public transport usage with
 points that could be redeemed for travel or shopping. With a SP survey
 it is analysed how far customers could be persuaded to change their
 behaviour if the point system is changed and potential large amount of
 points could be obtained via lottery like bonus points. It is found that
 there is some potential to attract customers to use public transport by
 such a scheme, though it is mostly existing users that would travel more
 if the point scheme is attractive. Attracting non-public transport users by
loyalty points appears difficult.

1. INTRODUCTION

The primary purpose of smart cards is to enable cash-free payments for 
public transport. This creates advantages for the users as well as operators: 
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For travellers it is convenient as they do not have to spend time looking 
up fare tables, buying tickets and dealing with coins. For operators the 
reduced cash handling, paper ticket printing and station crews are also 
helpful. More importantly though, especially for bus services, faster 
boarding and alighting time leads also to improve service regularity and 
to reduce operational costs. Moreover, there are “indirect” benefits of smart 
cards as the data obtained through these can possibly replace expensive 
surveys and replace technologies such as automatic passenger count 
systems. As discussed in several chapters in this book, the data analysis 
can then support the service planning at various stages. This chapter 
suggests that smart cards can also be used more directly to influence travel 
behaviour if point systems are introduced.
 Point systems are known to encourage user loyalty (Michael, 2004). 
Credit card companies and stores of all kinds provide users with member 
cards that allow them to pay with it and at the same time to collect points. 
Literature such as Davis (1999) reports that smart cards have an impact on 
shopping behaviour. In his UK example, it is reported that cardholders 
spend 10% more in drug stores. Considering transport applications, airline 
mileage points have also become a major attraction for many customers 
influencing their behaviour. The mileage systems do not only influence the 
choice of airline alliances but also mode choice (e.g., in Japan sometimes 
customers take a flight instead of the Shinkansen to collect mileage points) 
and possibly even trip generation.
 Mileage point systems can usually be exchanged for extra travel as 
well as for goods (Taylor and Neslin, 2005). Such point systems are much 
less applied for urban public transport for a number of reasons. First, 
often there is no strong competition between operators and second, if 
there is, generally the low price of public transport tickets does not seem 
to justify such a point system and third, until recently, tickets were mostly 
purchased with cash and therefore tracking travel records is cumbersome. 
Recently, the third point has become less of an issue in many cities due to 
the introduction of smart card systems. The first and second issues though 
appear to remain obstacles.
 One application of public transport point systems is to introduce them 
not in order to encourage loyalty but to encourage sustainable behaviour. In 
Nagoya, Japan, a case study is conducted where 5% of the fares were given 
back to the users as “transport eco-points”. Sato et al. (2006) report that this 
increased the rail trips temporarily by up to 5.6%. In general Morikawa 
(2008) suggests that providing users with eco-points for environment 
friendly behaviour can induce larger changes in behaviour than one would 
expect based on the monetary value of the points.
 In Japan, in some cities another possibility arises through the provision 
of transport services by private rail operators. These operators provide bus 
and rail services and at the same time run supermarkets and department 
stores. Therefore, point systems might be used to not only encourage travel 
by public transport in general but to encourage travel by the companies 
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public transport system. This is likely to encourage shopping in their stores 
also as these are located along the companies’ railway line. Furthermore, it 
is then easy to implement the exchange of the points, similar to credit card 
points, for shopping. 
 This chapter provides an example of a private rail operator based 
in Shizuoka, Japan where the smart card can be used for shopping in 
supermarkets also. The smart card of this operator includes a point system, 
similar to air mileage programs. 

2. MULTIPURPOSE SMART CARDS

The most well-known smart card that can be used for multiple purposes 
is probably Hong Kong’s Octopus card. It can be used for a range of stores 
including convenience stores, Starbucks or to pay at McDonald’s in Hong 
Kong. Currently, the first generation smart card is replaced by a second 
generation card that also allows online payments (Octopus, 2015). Similar 
schemes of multipurpose smart cards are also operated in several other 
cities around the world. Following the review of Pelletier (2011) Singapore 
should be mentioned where smart cards are used for a range of services 
so that they are a common payment mode also by non-transit participants 
(Smart Card Alliance 2009). Further noteworthy is the T-Money system in 
South Korea (T-money 2015, Asia IC Card Forum 2012), which can be used 
for riding taxis, at coin lockers, for public phones and public facilities such 
as museums.
 Regarding impact on travel behaviour, smart cards have certainly made 
public transport usage more convenient and in large cities most travellers 
use it, though it seems difficult to show how many new customers the 
smart card has attracted or whether existing customers travel more 
nowadays due to the smart card. McDonald (2000) reports that bonus point 
systems for smart card usage so far appear to have the main purpose to 
encourage people to sign up for the card. Those smart cards are not much 
used directly for demand management. This appears still largely true also 
sixteen years later. 
 Understanding the potential of bonus points for increasing public 
transport demand is the topic of the remainder of this chapter. The 
following two sections offer an introduction to Shizuoka, the Shizutetsu 
group and the smart card it provides. Section 5 then discusses a stated 
preference (SP) survey to understand whether travellers would change 
their behaviour depending on the point system. Section 6 concludes this 
chapter.

3. CASE STUDY AREA AND SMART CARD DATA OVERVIEW

3.1 Shizuoka and Shizutetsu

The case study is Shizuoka city in Japan with a population of 703,937 (as 
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of Oct. 2014). Shizuoka is situated on the main Shinkansen line between 
Tokyo and Osaka. Within Shizuoka, the “Shizutetsu-group” has emerged 
as a rail operator, bus service provider and a retailer. The Shizutetsu 
railway is used by about 10 million passengers per year covering 11 km 
between 15 stations connecting from Shin-Shizuoka station to Shin-
Shimizu station. Shizutetsu buses are used by about 30 million passengers 
per year mainly in the centre of Shizuoka City. The supermarket chain 
called “Shizutetsu store” has a total of 33 stores of which 19 stores are 
in Shizuoka city and 14 stores in the surrounding area. Many of these 
stores are situated near a railway station or bus stop. In addition to the 
supermarkets there is also a department store (shopping mall) close to 
Shin-Shizuoka Station. The same smart card could be used for rail usage, 
bus usage as well as shopping in any of the 33 supermarkets as well as 
the department store. Furthermore, Shizutetsu group is also operating 
highway buses, taxis, a cable car and is active in the car rental, building 
management and other businesses.

3.2 Multipurpose Smart Card “LuLuCA”

Regardless of being a public corporation or a private company, most 
Japanese transport operators, especially railways, have spread their 
business to include subsidiaries that benefit from the increasing people 
flow and with it land value growth brought by their transport services. As 
is the case for Shizutetsu, most rail operators also own shops in the station, 
supermarkets or rent out shopping and office spaces. 
 Since smart cards are further often issued by the transport operators 
themselves, this brings the possibility to use the smart card as a “common 
currency” for all business branches of the operator. For example, the East 
Japan Railway Company Group, one of the largest operators in Japan, owns 
convenience stores called “kiosk” in stations, at which it is possible to pay 
for food and other articles by the smart card. The JR East smart card can 
though not yet be used for larger shopping in supermarkets or departments 
of the store. This is possibly because a credit function is not (yet) available 
on this smart card. 
 Shizutetsu group appears to be one step ahead in this respect. The 
smart card introduced by Shizutetsu is called “LuLuCa”. There are four 
types of LuLuCa depending on whether the cards have a credit or only 
debit function and further depending on which range of Shizutetsu 
services they can be used for. With two types of cards only shopping use 
is possible but not public transportation usage. In the following we refer 
to these as “shopping only card”. Table 1 shows the four types of LuLuCa 
cards.
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Table 1. LuLuCa types and spread

Card Type
Can Pay for 

Shizutetsu Public 
Transport 

Can Pay for 
Shopping in 

Shizutetsu Group 
Stores

Number of 
Cardholders

LuLuCa Point — — 390,767

LuLuCa Pasar ¡ — 205,203

LuLuCa Plus

with Credit Function
¡ ¡  29,567

LuLuCa Paleta

with Credit Function
— ¡  16,042

Each smart card has a unique ID and is assumed to be used by the same 
individual over the analysis period. On the two card types with credit 
function personal information such as home address, age, gender is also 
provided at the registration. 
 When LuLuCa was first introduced, users could get an incentive to 
use the smart card by rewarding them with an extra 100 Yen (about 0.9US 
$) when the card was charged with 1,000 Yen. That is, charging the card 
allowed the users to pay for services worth 1,100 Yen. However, in March 
2014 a new point service was launched. Since, then the passengers using 
LuLuCa to pay for public transport get instead 10% of the ride fare as 
points (except for season cardholders). Further, when people use LuLuCa 
for shopping they get 1 point for every 108 Yen paid in cash in one of the 
Shizutetsu supermarkets. (108 Yen and not 100 Yen because 8% VAT is not 
considered for the points rule). In addition, there are some cases of more 
points being granted by the stores for products on offer. Whenever a 
customer/traveller collected 500 points these are exchangeable for vouchers 
worth 500 Yen that can be used either for travel on Shizutetsu services or 
for shopping in Shizutetsu-group owned stores.
 Table 2 summarizes the data that can be obtained from LuLuCa, 
distinguished by public transport, shopping related data and personal 
information. All data include the unique ID, which makes it possible to 
analyse the three sets together. We note that public transport data includes 
the fare which allows us to also distinguish commuter pass holders as they 
are not charged for single trips.
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Table 2. Data collected by LuLuCa

Data Type Data Item

Public Transport (Train 
and Bus)

Card ID (unique value), usage date (year/month/day), usage time when getting on or off 
the bus or entering/exiting the rail station. Usage fare.

Shopping Card ID (unique value), usage date (year/month/day), usage time of shopping, shop 
code, purchase amount.

Personal Attributes card ID (unique value), age, gender, home address, family type, income range  
(only credit card).

4. OVERVIEW OF COLLECTED DATA

Table 3 shows the result of aggregating the number of public transport 
usage and shopping. The total number of bus trips is about 3 times that 
of train trips, because the target area has a widespread bus network and 
only a single train line. LuLuCa is further even more used for shopping 
than for public transport. Considering that some cards could be used 
for public transport only, we find though that there are less shopping 
transactions per cardholder. Therefore, one can conclude that many daily 
users of Shizutetsu buses do not visit their stores or supermarkets during 
their journeys. (In general, in Japan the supermarket shopping frequency is 
probably higher than in most other developed countries, as Japanese tend 
to buy fresh food several times per week.) Changing this situation is one 
of the motivations for Shizutetsu to conduct this study. Figure 1 reinforces 
that further there is an even larger pool of shopping customers who do not 
use public transport. Obviously, Shizutetsu would like to attract some of 
these people to both shop in their stores and to use their public transport. 

Table 3. Aggregate LuLuCa usage statistics in 2014

Total Usage Number of Cardholders Average Usage per Card

Transit
Train 6,555,750 74,472 88.0

Bus 18,500,922 157,907 117.2

Shopping 25,079,953 426,050 58.9

Railway

Shopping

Bus

5,990

(1.2%)

9,651

(2.0%)

47,114

(9.8%)

16,544

(3.4%)

38,979

(8.1%)
48,256

(10.3%)

313,249

(65.3%) 497,783

(100%)

Fig. 1. The usage pattern of public transport and shopping
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Figure 2 shows the usage pattern of cardholders by gender and age. 
Overall, women use LuLuCa more since they go shopping more to 
Shizutetsu supermarkets. Men though use Shizutetsu more for commuting. 
Comparison of LuLuCa usage by age further shows that there are no 
significant differences among people in their working ages. Older people 
use LuLuCa much more for shopping only. This possibly shows an 
opportunity that improvements in the service could encourage this age 
group to remain public transport customers.

5. STATED PREFERENCE SURVEY ON SENSITIVITY TO  
 POINT SYSTEM 

5.1.  Survey Structure and Hypotheses

The case study aims to understand better sensitivity of behaviour to 
potential changes in the point system. In particular, it is analysed whether 
changes in the point system will impact users’ mode choice and shopping 
frequency. With the cooperation of the rail operator, therefore a stated 
preference (SP) survey is implemented among the card users. Subjects are 
selected based on their public transport usage and shopping record. In the 
SP survey, the regular points that a user can earn by using public transport 
vary as well as details of the “bonus point lottery”. Both the values of the 
bonus points as well as the potential to win are varied. Through ordered 
regression models it is then analysed which customers are likely to 
decrease or increase their travel frequency and which customers are not 
influenced by the point system. The authors are further in the fortunate 
position that socio-demographics  recorded on the smart card such as 
gender, age and home location can be used as control variables.
 A number of potential point schemes are tested with the goal 
to increase public transport usage and, important for Shizutetsu, to 
increase shopping in their stores. For this purpose a number of schemes 
are designed in which extra points are earned if passengers use public 
transport service and go shopping on the same day. It is expected that 
such schemes might increase “planned shopping” as well as “incidental 
shopping”.
 The questionnaire consists of two main parts. In the first part the 
respondents are asked about their knowledge of the current point system 
as well as their travel and shopping behaviour. Furthermore, the travel 
behaviour of the respondent can be observed through linking the survey 
respondent with their smart card records via the smart card ID. To get 
information about their other transport usage the respondents are also 
asked about their usage of private cars as driver and passenger. In the 
second part of the survey users are asked about their likely behaviour if a 
new point scheme would be introduced. Thus, the survey is designed with 
the following hypotheses in mind:
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Hypothesis 1: The behaviour of low frequency public transport users is 
more sensitive to the point service, compared to card holders who do not 
use public transport at all and those who use it very frequently.
 Our rationale is that a point service is unlikely to persuade those who 
are not interested in using public transport at all. Further those who rely 
on public transport already are unlikely to make more trips just because of 
the point system. Instead, occasional, infrequent users who are in general 
willing to use public transport are likely those who might increase their 
bus or train journeys if provided more incentives.

Hypothesis 2: A point service combined with a lottery has the potential to 
increase the usage of public transport, while reducing the burden on the 
operators by appropriately setting the winning chance.
 Lotteries are commonly applied for many existing point systems. 
The idea could be linked to prospect theory, that is, users might be 
disproportionately attracted to potential large but risky gains. 

Table 4. SP settings for certain points and for bonus points

Level 3Level 2Level 1

2.5% of fare5% of fare10% of fareCertain points

10%50%90%Bonus points winning probability

4520.50Expected bonus point

To verify the above hypotheses, three factors in the SP survey vary 
between three levels respectively as shown in Table 4. “Certain points” 
means the number of points given uniformly according to the paid fare 
when boarding a train or bus. In the current point service 10% of the fare 
is given. In addition, the impact if only 5% or 2.5% of the fare is being 
“returned” as points is tested.
 Only those customers who use public transport and go for shopping in 
the same Shizutetsu supermarkets enter the bonus point lottery. Expected 
bonus points describe the amount of bonus points given divided by the 
winning chance. For example, in case of 90% winning probability and 45 
expected bonus points, 90 out of 100 people get 50 bonus points whereas 10 
receive none. Zero bonus points are added as a case to test the “base case” 
of no lottery. These factors were allocated using an experimental design (L9 
orthogonal array). 
 Table 5 shows the information that was actually presented to the 
respondents. For an SP it is desirable for the order of the 9 patterns posed 
to respondents to be perfectly random. This is approximated by asking 
respondents 5 out of 9 patterns that are chosen according to the smart 
card number. For each pattern, then the respondents are asked if they are 
likely to {increase, not change, decrease} the number of times they travel by 
public transport and go shopping on the same day.
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Table 5. Patterns presented to survey respondents

Point 
scheme ID Certain points Bonus points winning 

Probability
Number of bonus point if 

lucky

1 10% of fare 0% 0pt

2 10% of fare 50% 45pt

3 10% of fare 10% 450pt

4 5% of fare 90% 25pt

5 5% of fare 50% 90pt

6 5% of fare 0% 0pt

7 2.5% of fare 90% 50pt

8 2.5% of fare 0% 0pt

9 2.5% of fare 10% 225pt

In addition respondents are asked to describe in words how much their 
travel + shopping frequency might change. The survey was conduct as a 
mail return survey randomly selecting LuLuCa cardholders. In total, 5,891 
survey forms were sent out and 1,302 completed surveys are obtained 
which is equal to a response rate of 22.1%.

5.2 Descriptive Survey Results

Figures 3 and 4 illustrate the knowledge about the current point service 
among the cardholders. There are 435 respondents who have invalid cards 
that cannot be used for public transport as shown in Figure 3. It was found 
that 38% are not aware of the point scheme, which is not surprising since 
about 52% of the cardholders do not use it for public transport. 49% of 
those who do not use a card that allows for public transport usage do not 
know about the point service. It therefore suggests that a simple measure 
for Shizutetsu to potentially increase public transport usage is to start a 
campaign to raise awareness of the point system. In contrast to the public 
transport usage point system, the shopping point system is widely known 
(more than 90% of cardholders), as illustrated in Figure 4.

Fig. 3. Knowledge about the PT usage point service

Number of survey respondents 
500,-------~~---------------------------r========~ 

400 

300 

200 

100 

____________________________________ _, • No knowledge 
D Have knowledge 

oL-~----~----~----~----~----~----~----~----~----~~ 

Shopping 
only card 

No use Lowfreq. 
(below 4 times) 

Middle freq. 
(4- 19 times) 

Usage frequency public transportation 

High freq. 
(20 times or more) 
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Fig. 4. Knowledge about the shopping point service

Figure 5 shows the percentage of subjects who answered “increase”, 
“no change”, or “decrease” concerning the usage of public transport 
and shopping on the same day. Note that the first scheme is in fact the 
currently operating scheme. Still nearly 30% of customers answered that 
they will increase their usage frequency under this point scheme and 
5.6% answer that they will decrease the use. Therefore, these numbers 
might partly show the missing knowledge of the point scheme but also the 
scale of a typical SP response bias where the respondents tend to express 
“good intentions”. These biases should hence be taken into account when 
interpreting our subsequent results. It is found that 568 respondents 
replied that they will not change their behaviour independent of the point 
scheme and this group is referred to in the following as the “no change 
group”. The focus of the subsequent analysis is on the 734 users who 
indicated that their usage might vary based on the point scheme. Among 
these “changers” the expected tendency that more rewarding point 
services lead respondents to reply that they will more likely use public 
transport and go shopping is found.

5.3  OLM and MNL Analysis

Ordered logit multinomial (OLM) choice models are formulated with 
intended change in usage frequency as dependent variable. As discussed 
above a number of explanatory variables could be obtained. Firstly, the 
survey respondents who might change their behaviour are divided into 
12 groups according to their current usage of the smart card for public 
transport and shopping as shown in Table 6. Additional explanatory 
variables and interaction terms tested are listed in Table 7.
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Table 6. SP respondents grouped by frequency of shopping and public transport usage

LuLuCa Shopping per Month Total

None
(zero times)

Occasionally 
(1-7 times)

Frequent
(8+ times) 

Lu
Lu

Ca
 PT

 U
sa

ge
 pe

r M
on

th

LuLuCa not registered for PT usage 74 153 16 243

None (zero times) 62 92 30 284

Occasionally (1-19 times) 95 80 43 218

Frequent (20+ times) 20 56 13 89
Total 251 381 102 734

Table 7. Explanatory variables for OLM and MNL models

Name of Explanatory Variables Description

Frequency of current PT × 
Frequency of current shopping

Interaction of the variables shown in Table 6. These twelve groups are further 
interacted with certain points and expected bonus points in the model.

Certain points Certain points to be obtained when cardholder pays for PT.

Expected bonus point Expected bonus point to be obtained when the cardholder uses PT and goes 
shopping on the same day.

Winning probability Winning probability for bonus points. 

Average PT usage per month Mean times of train and bus usage by LuLuCa from December 2013 to 
November 2014.

Expected decrease in certain points Reduction in points given the current public transport usage and the one 
stated in the scenario.

Amount of shopping per month Amount of shopping per month with LuLuCa between December 2013 and 
November 2014.

Private car usage dummy 1 for cardholders using their private car more than two days per week. 

Living with family dummy 1 for cardholders living with their family.

Living alone dummy 1 if cardholders live by themselves.

Near station dummy 1 for cardholders who live within 700 m (direct distance) from a station.

Near bus stop dummy 1 for cardholders who live within 200 m (direct distance) from a bus stop.

Near supermarket dummy 1 for cardholders who live within 500 m (direct distance) from a Shizutetsu 
supermarket.

No train usage dummy 1 if the card has not been used for travelling by train between December 2013 
and November 2014.

No bus usage dummy 1 if the card has not been used for travelling by bus. 

No shopping usage dummy 1 if the card has not been used for shopping.

PT point knowledge dummy 1 if the respondent knows about the point service for PT usage.

Store point knowledge dummy 1 if the respondent knows about the point service for shopping.
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First, an ordered logit model is estimated where the dependent variable 
is whether the respondent is planning to increase, not change or decrease 
his frequency of using PT and go to a Shizutetsu store for shopping on the 
same day. Then a multinomial logit model (MNL) is estimated again with 
same three response categories as dependent variable. Table 6 shows the 
estimated results of both models.
 As expected, parameters related to points and winning probability 
mostly take a positive value. Hence, as the points and winning probability 
become larger, respondents are more likely to choose “increase”. 
Parameters related to the fixed points given are significant for eight out 
of twelve groups. In particular, it is found that those who already at least 
occasionally shop and use public transport state that they would increase 
their shopping and public transport usage. Parameters for current non-
public transport users are instead not or barely significant. This suggests 
that by changing the point system it is difficult to attract new travellers/
customers but the existing travellers/customers could be persuaded to 
travel and shop more often if they promise more points. Similarly, it is 
found that lottery type bonus points might attract existing customers but 
not people who now either do not shop or do not use Shizutetsu transport 
services at all. Our further parameter estimates suggest that in particular 
the current PT usage frequency determines whether the point system 
would have an impact.
 Through dummy variables, it was found further that the family 
situation and whether a person is living near a station are significant 
factors. Those living near a station are less likely being influenced by the 
point system, possibly due to the fact that they also depend more on the rail 
and bus services and are captive users anyway.
 The purpose of the MNL model is to test whether there are different 
effects determining “increase” and “decrease” compared to the reference 
group “no change”. It is found that reduction in certain points is more 
significant to explain why some person groups might decrease their public 
transport and shopping usage, whereas lottery points are more significant 
to explain why some people would increase their shopping and public 
transport usage. This suggests that any reduction in certain points should 
be considered carefully as it would possibly affect the behaviour of existing 
customers. Lottery points appear risky for the operator also as they might 
attract new customers, but it is not clear if there are significant increases in 
sales/ridership. Through the MNL model it is further found the car usage 
dummy is positive significant for “no change”. This once more reinforces 
the observations that point systems seemed of limited effect to attract new 
customers.
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6. CONCLUSION

After a general discussion on multipurpose smart cards a combined 
point service for public transport use and shopping in Shizuoka, Japan 
is evaluated. The fare system initially introduced by Shizutetsu had been 
very generous in providing travellers with a 10% discount for prepaid 
cards. This system was then changed in 2014 to a system where users 
get points according to the amount of fare paid. The implicit amount of 
discount has not been changed as still 10% of the fare is returned to the 
users in the form of points. Nevertheless, the use of public transport has 
decreased. Partly because of this and partly because the point system is 
still generous compared to points earned by shopping, Shizutetsu is now 
considering alternative point schemes.
 With the effect of an SP survey the possible user reactions are 
evaluated. The effect of reducing the fixed points given to users are tested 
as well as the potential impact of a lottery where users can win points if 
they travel by public transport and shop on the same day. This requirement 
of having to shop at Shizutetsu stores and use public transport on the same 
day to enter the lottery is obviously of interest to Shizutetsu but one might 
argue can also be interpreted as a sustainable transport policy in aiming to 
shift the mode choice especially for shopping trips.
 It is found that there is a substantial number of users (around 56%) 
who will not change their travel and shopping behaviour in response to 
changes in the point system. However, through OLM and MNL modelling 
it is also found that the users who are already using public transport or 
shopping are likely to reconsider their behaviour and might in future 
increase their shopping frequency (if they have been frequent public 
transport users already) or their public transport usage (if they have been 
regular Shizutetsu supermarket customers already). It is further found that 
especially those with LuLuCa cards that are not currently registered for PT 
usage might change their card and hence start using the scheme. Another 
important finding is that small decreases in the point system might not 
have a significant effect especially if compensated with a lottery system.
 Clearly the current results cannot be taken as direct predictions on how 
much the demand will change due to potential biases in the SP responses. 
However, it is believed that the general tendencies in change of behaviour 
obtained for the different groups would pertain. As one limitation it should 
be mentioned that the study could consider cardholders only so that it does 
not include the effects of any customers currently not possessing a LuLuCa. 
However, especially for this reason the results regarding the users who 
currently have LuLuCa cards are not eligible for using public transport 
appears promising.
 In general, it is hoped that this study might trigger more research on 
promoting change in behaviour through new pricing options available 
to operators through smart card data, in particular through increasingly 
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available multipurpose smart cards. This appears to be still an under-
researched area.
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A B S T R A C T
 The disaggregate nature of transit smart card data is congruent with
 the travel demand specification as used by agent-based approaches
 to transport modelling. Using a full day of public transport smart
 card transactions recorded in Singapore, we develop an approach to
 transform the smart card data into both transport supply and demand,
 while simultaneously eliminating the need to simulate the interaction
 between cars and buses. In order to produce realistic travel times for
 buses, a regression model of bus speed between stops was estimated, that
 is dependent both on the level of demand and network topology. The
 simulation includes a model of bus dwell time at stops that is dependent
 on the ridership of the bus and its configuration. It allows us to simplify
 the supply network dramatically with only one link between bus stop
 combinations and another link at the stop for buses to queue to perform
 dwell operations. These modifications, along with a simplified mobility
 simulation, dramatically improves simulation times, ensuring useable
 results in an hour. In addition, our modelling framework is highly
 adaptable and requires only limited efforts to be applied to other public
 transport systems in cities where similar data streams are available.

1. INTRODUCTION

It is widely agreed that provision of attractive public transport services 
is of central importance for the sustainable development of cities, as it 
outperforms individual motorized transports in terms of cost, environ-
mental impact and social equity. To plan and design efficient urban public 

Chapter8
Using Smart Card Data for Agent–
Based Transport Simulation
P.J. Fourie1,*, Alex Erath2, S.A. Ordonez3, A. Chakirov4 and K.W. Axhausen5

 1-5 Future Cities Laboratory, Singapore ETH Centre, #06-01 1 CREATE Way,  Singapore, 138602.
 * Corresponding author



134 Public Transport Planning with Smart Card Data

transport service provision, municipal planning organizations (MPOs) and 
service operators usually develop transport demand models. The models 
currently used in practice operate on the principle of modelling trip flows 
between geographical zones and hence are subject to aggregation over 
the horizons of time and space. However, current urban transportation 
problems, such as congestion and service reliability, are of an inherently 
dynamic nature. This is particularly the case for public transport as 
overcrowding, schedule reliability and bus bunching are inherently 
dynamic phenomena observed in many cities all over the world. 
 To address the shortcomings of aggregate methods, large-scale, agent-
based transport demand simulation models have been developed that 
preserve full temporal dynamics as well as disaggregated information on 
individuals through the entire modelling and simulation process. Software 
packages such as MATSim (Balmer et al. 2009) or TRANSIMS (Smith et al. 
1995) are designed to dynamically simulate transport demand and supply 
for millions of agents over an entire day at the temporal resolution of a 
second. These models take an activity-based approach, acknowledging 
that travel demand is the result of the need to perform activities in 
different points in space and time. Entities in the simulation have a one-
to-one correspondence with their real-world equivalents, therefore an agent 
in the simulation represents a single commuter in the physical system. 
Similarly, private and public transportation vehicles have equivalent 
entities in the simulation. Dynamic phenomena such as congestion and bus 
bunching emerge from interactions between all participating agents in the 
simulation.
 While many cities recognise the potential of agent-based and activity-
based approaches, these methods have come under much criticism for 
being exceptionally data hungry, with finely-grained information needed at 
all stages of the travel demand modelling process. These typically include 
a detailed synthetic population describing travel demand as function of 
various household and personal demographic attributes; as well as the 
modelling of the transport supply system, i.e., the transportation network, 
vehicle fleet, public transport schedule and activity facility capacities 
serving the demand. Dynamic assignment models are also notoriously 
difficult to calibrate, as observed traffic volumes and travel times are 
emergent phenomena resulting from the dynamics in the system. Because 
these systems work from the bottom up, they require that individual 
behaviour and interactions be described adequately in the simulation, 
in order for the full range of dynamic phenomena to emerge as observed 
in reality. Furthermore, as all participating transportation modes subject 
to the full range of commuter choice dimensions need to be simulated 
repeatedly for the system to reach a steady state, simulation times are 
notoriously long.
 In the light of these difficulties, there remains an argument for the use 
of so-called direct demand models that do not attempt to capture the full 
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gamut of cause and effect as being attempted in the activity-based methods, 
but instead rely on inferring the reaction of the transportation system to 
dynamically changing demand, based on observation. 
 The data produced by automatic fare collection (AFC) systems 
represents a uniquely appropriate input to a direct demand model. 
Production of the data records by such systems document public transport 
ridership patterns in great detail, at the level of individuals with precise 
spatio-temporal information. Since 2005, authors such as Bagchi and White 
(2004, 2005) have studied the potential of using this type of data. Pelletier  
et al. (2011) present a summary on how AFCS data has been used to analyse 
public transport systems worldwide. While they find that smart card data 
are used at all three levels of public transport management, i.e. strategic, 
tactical and operational, their survey uncovers no work so far in using the 
data to drive a simulation model to predict the performance of alterations 
to the system. 
 The aim of this paper is to assess the potential of using AFC system 
data in an agent-based simulation for the case of Singapore. To this end, a 
MATSim scenario was created, using smart card transaction data as travel 
demand input and detailed public transport schedule information and 
a global positioning system (GPS) navigation network to describe supply. 
To eliminate the need for simulating the full transport system of public 
and private vehicles for realistic travel times to emerge from repeated 
network loading, we derived a model for the speed of buses between public 
transport stops as a function of localised public transport demand from the 
smart card data and topographical information contained in the network 
description. We extend the existing MATSim framework by introducing 
stochastic terms to describe bus dwell time behaviour at stops and travel 
time between the stops, which are the main determinants of service 
reliability in public transport operations. We validate the resulting model 
against the information contained and derived from the smart card data. 
 The potential of the approach in predicting the response to alterations 
in the system is presented by splitting a long existing bus line as a case 
study. The paper concludes by evaluating the approach’s applicability for 
practice and identifying future research directions.

2. USER EQUILIBRIUM AND PUBLIC TRANSPORT IN MATSIM

MATSim is a platform to simulate transport demand and supply 
interactions allowing for large-scale scenarios where millions of agents 
represent people interacting. For each agent, a daily activity plan is 
assigned representing the sequence of activities it has to perform at 
different times and at different locations within a specific period of time 
(in general one day). MATSim uses an evolutionary algorithm to reach 
a steady state. The same day is simulated many times and a fraction of 
the agents modify their plans after each iteration. There are many ways 
to modify their plans; they can change the departure time, the travel 
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mode of a sub-tour, or location of a given type of activity, among others. 
This work focused on the route modification, more specifically for public 
transport users. The utility of the day is measured for each agent in each 
iteration using a scoring function that rewards agents for performing 
activities, while penalizing them for travelling, transferring between 
transport modes, waiting at transit stops and arriving late for activities, 
etc. (Charypar and Nagel 2005). Agents save a small number of plans, 
remembering those that scored well and forgetting the others. Thus, the 
general score of the population tends to grow until, after hundreds of 
iterations, the system reaches user equilibrium and the generalized utility 
cannot be improved any more (Balmer et al. 2009). 
 MATSim includes a full implementation of public transport (Rieser 
2010). On the transportation supply side, the system is represented by stop 
facilities and transit lines. Several routes can belong to each line. Each of 
these transit routes holds the information about the sequence of stop 
facilities with the expected arrival and departure offsets, the sequence 
of links in the road network a vehicle of this route has to follow and the 
departure times of all the services of the route. As the links that public 
transport vehicles have to follow belong to the road network that private 
vehicles use in the simulation, public transport vehicle travel times are 
affected by congestion for modes like bus or tram that share the network 
with private transport, while modes with exclusive networks and precise 
signaling and control (i.e., rail, subway, monorail) tend to work close to 
scheduled times. 
 Another source of deviation from schedule, especially for bus, is the 
time spent at bus stops allowing passengers to board and alight. This 
dwelling process could be modelled in two ways in MATSim: the simple 
approach just calculates the time a vehicle has to stop according to the 
number of passengers, type of vehicles, number and configuration of 
vehicle entrances as well as exits and vehicle occupancy, while a more fine-
grained approach would simulate a queue agents use to enter the vehicle. 
 For the bus stop facilities, availability of a bus bay could be specified 
to indicate whether a bus is obstructing a link for cars during the dwelling 
process. MATSim also allows the same vehicle be scheduled to perform 
several services; if it is late, the next service would not be able to start. Thus, 
the level of detail of the public transport module can simulate phenomena 
such as early or late services, crowded vehicles, bus or train bunching and 
long waiting times resulting from service denial to fully loaded vehicles.

3. CEPAS

3.1 Suitability of Using CEPAS Data to Describe Public 
 Transport Demand

Contactless, stored value smart cards for fare collection have been 
introduced in Singapore in April 2002 under the name EZ-Link. In 2009, 
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a new standard for electronic payment smart cards called Contactless 
e-Purse Application (CEPAS) superseded EZ-Link. CEPAS-compliant 
smart cards could be used island-wide for payment of all modes of 
public transport, regardless of operator, as well as for minor retail 
transactions, parking and road toll payment. Though cash payment of 
single fares at higher rates is still possible, e-payments with CEPAS cards 
account for 96% of all trips, which makes the data records from CEPAS 
highly comprehensive and the missing cash paying travellers negligible 
(Prakasam 2008).
 In Singapore, the fare system is distance-based and customers have 
to tap their CEPAS card on the reading device every time they enter and 
leave a train station or a bus, or they get charged the maximum amount for 
that particular service. GPS devices on buses ensure that each transaction 
has a unique transit stop identifier, as well as the vehicle identification 
number. Each transaction thus has information on timing and location, 
and generally most trips contain information on both boarding and 
alighting transactions; a notable exception is the case of concession cards 
for schoolchildren, students and senior citizens where the maximum 
charge is capped at 7.2 km. These users therefore sometimes do not tap out, 
especially when the bus is full and users want to alight faster.
 The completeness of the Singaporean smart card data, both in terms 
of market penetration and recording of both boarding and alighting 
locations, distinguishes it from those collected by the majority of other 
automatic fare collection systems and allows for more detailed assessment 
of travel behaviour and mobility patterns. In many other countries users 
do not have to tap out of the bus or tram and the alighting location is 
thus not recorded, although researchers recently proposed techniques 
to impute its value in the absence of such information (see Chapter 2 or 
Munizaga and Palma 2012). Furthermore, as the CEPAS cards are durable 
and easily rechargeable, people tend to continuously use one single CEPAS 
card with a unique card ID for all their public transport journeys for 
substantial periods of time. As the technical setup of the system doesn’t 
allow more than one person to travel on a single CEPAS card, it could be 
assumed that each unique card ID represents a single person. This enables 
highly disaggregated analysis of each itinerary and opens new ways for 
understanding people’s travel behaviour over the short as well as longer 
term scales.
 Given the temporal and spatial resolution of the CEPAS data, it is 
perfectly suited to represent travel demand in a simulation of Singapore’s 
public transport system using MATSim. By combining it with information 
on supply derived from published schedule information it becomes 
possible to generate a simplified MATSim scenario. This scenario could be 
used as a predictive system to evaluate changes in public transport service 
provision such as the type of buses being used, service frequency and 
service network. 
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3.2 Combining Agent-based Transport Simulation and CEPAS Data

CEPAS data only describes demand for public transport services. 
Therefore, we restrict the scope of the MATSim model presented in this 
study to public transport only and simulates its operation separate from 
other transport modes. 
 The scope of analysis is restricted to route choice effects as the 
simplified scenario covers the public transport system in isolation and 
no information is available about the trip purposes or socio-demographic 
background of travellers. Furthermore, the system cannot account for 
mode choice effects, i.e. passengers switching away from private modes or 
switching to public transportation due to changes in system performance; 
neither can it account for so-called induced demand, where changes in the 
level of performance of the public transportation system result in people 
performing more or fewer activities because of more or less time opening 
up in their travel time budgets.
 Information of an individual traveller is restricted to a unique card 
identifier and fare type category, namely, child/student, adult and senior. 
Furthermore, there is no information about the trip purpose and real 
trip origin and destination at the level of buildings, but only the public 
transport stop where the transaction took place. As our approach does 
not infer the real trip origin, destination or trip purpose, the scope of the 
analysis cannot include destination choice effects. 
 To restrict the scope of the simulation to public transport it needs to 
account for interaction effects with cars resulting in increased travel times. 
To this end the observed travel times from the smart card data are used 
to develop a regression model of bus movement between the transit stops. 
The simulation uses the error term from this regression model to arrive at 
a stochastic model of travel times between the transit stops that eliminates 
the need to model a fully detailed network during the simulation. This bus 
speed model allows one to predict the distribution of travel times during 
the course of the day for network links that are not in existence now, 
making system-wide network re-design evaluation possible.

4.  METHOD

In MATSim, public transport vehicles share roads with other vehicles and 
dwell operations are modelled in detail. As the aim of this work is to set-
up a simulation only using AFC system data, we simplified the MATSim 
mobility simulation and the transport network, restricting it to public 
transport vehicles only. Fig. 1 shows the processes we designed and 
implemented and how these affect a standard MATSim simulation. The 
next section describes reconstruction of the bus trajectories, generation 
of a public transit schedule, then generation of public transport trips as 
MATSim plans (the demand), followed by the simplification of the road 
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network and finally the new mobility simulation model and its constituent 
sub-models in MATSim.

Fig. 1. Simplified public transport simulation overview

4.1 Reconstruction of Bus Trajectories

Given boarding and alighting transactions of bus users it is possible to 
estimate the position in space and time of the corresponding buses (their 
trajectories). For each vehicle ID in the system, by grouping its transactions 
at each stop into sets that represent bus dwell operations, it is possible 
to impute the time that it takes for the bus to travel between bus stop 
locations. From our electronic transit route profile, the exact route between 
bus stop locations is known and therefore the vehicle’s trajectory can be 
reconstructed once all dwell operations have been identified.
 There are a number of challenges in the trajectory reconstruction 
process:

Bus stops without transactions: As boarding and alighting actions might 
not occur at every stop, the bus can remain “invisible” to the system. A 
simple interpolation technique was used to estimate the time when the 
bus reached these stops. For stops that precede or follow the first and last 
“visible” stops we did not apply extrapolation to estimate the bus arrival 
times at those stops.

Early tap-outs and late tap-ins: As the bus approaches the public 
transport stop, the GPS system automatically activates the reading 
device, making it possible to tap out before the bus doors have opened. 
Furthermore, sometimes passengers have entered the bus but are still 

Unkdynamlcs 1-------------­
model 

Trajectory 
reconstruction 

Network 
simplifiCation 

Transactions to 
activity plans 
conversion 



140 Public Transport Planning with Smart Card Data

fumbling to get their cards out for the reader and the tap-in registers late. 
As these transactions do not happen while the bus is at the bus stop, they 
have to be recognised and filtered out to produce a better estimation of the 
arrival and departure times of the public transport vehicles.

GPS errors: The way the system recognises the stop where the transactions 
are occurring is to read the position of the buses from their GPS devices. 
If GPS readings are incorrect, especially when stops are very close to each 
other, during inclement weather or in high-rise urban environments, the 
stop identifier could be recorded incorrectly. 

For a complete description of the trajectory reconstruction process, the reader 
is referred to Fourie (2014). These estimations of when dwell operations occur 
and the trajectories between stops were coded into MATSim ‘events’; time-
stamped, atomic units of information normally generated by the agent-based 
simulation that give a complete description of all vehicle and commuter 
agent actions during the course of the simulated day. The resulting XML 
file can be visualized and analysed using MATSim-compliant software and 
direct comparisons against MATSim simulations are greatly simplified.

4.2 Generation of a Public Transit Schedule

We used the reconstructed bus trajectories to determine the number 
of services and the time when the services start for every bus line in 
Singapore. As the vehicle identifier of each bus is known in the CEPAS 
data, we assigned the corresponding type of bus in the simulation, 
accounting for carrying capacity, doors operation mode, single or 
double decker configuration (which affects the bus dwell time). Fig. 2 
summarizes this process. We compared these results with the commonly 
used Google Transit Feed Specification (GTFS) of the public transport 
system in Singapore. It recognised a significantly smaller number of 
services in CEPAS data: 4 bus lines were not found, 33 bus routes (different 
sequences of stops within a bus line) were not found and of the 91115 
services specified in GTFS our reconstruction process recognised only 
78515 services (86%). It is possible that a whole service is not visible due 
to lack of transactions or GPS errors as mentioned before. The difference 
in this comparison is still considerable, so the GTFS numbers could be 
overestimated. As reconstruction of the train trajectories presents even 
greater challenges than those for bus, because the transactions are recorded 
at the station entrance and not when the passengers enter and exit the 
vehicles, a similar reconstruction process has not been implemented at 
this point, but we intend to implement the method developed by Sun et al. 
(2012) in a future iteration. Consequently, the number of train services and 
their start times are directly obtained from the GTFS.
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Fig. 2. Transit schedule generation using bus trajectory information from reconstruction process

4.3 Generation of Public Transport Trips

MATSim is an activity-based simulation framework and its demand 
description is a timed sequence of activity locations and connecting trips 
for each agent in the study area. Generating an agent-based demand 
description from the smart card data is a straightforward task; each 
boarding and alighting location could be used as an activity location in 
an agent’s activity schedule. However, this would mean that we identify 
each transfer in a public transport trip as a significant activity and also 
over-specify the demand description by determining transfer location. It 
is important that realistic transfer locations, and their associated walking 
and waiting times, rather emerge from the simulation than be specified 
in the demand description. This end-to-end demand description requires 
identification of the initial boarding and final alighting location of each 
multistage trip in the smart card data and to use these transactions as 
approximate activity locations and activity start/end times of the agents. A 
number of challenges have been encountered in this process. 
 Access waiting forms an important component in an individual’s 
transit experience; however, in the case of buses, recorded times don’t 
correspond to user arrivals and departures to the public transport system. 
As transactions correspond to boarding and alighting only, the time 
when users arrive at the bus stop are unknown (except in transfers). More 
realistic bus stop arriving times for passengers are important for waiting 
time calculations. On the other hand, bus-bus, bus-train and train-bus 
transfer times are known and even exact bus lines could be assigned. That 
means, bus routes are fully reproducible from reality. 
 To assign bus users trip start times and identify individual multistage 
bus trips, we developed a two-step procedure. First, when a user alights 
from a bus and enters another vehicle, we established a threshold of 25 
minutes to categorize those transactions as transfers or not transfers. If 
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the time between alighting and boarding is more than 25 minutes, it is 
assumed that the user has left the system, therefore, they accumulate 
newly recorded access waiting time upon re-entry. The second step assigns 
bus users start times, using the reconstructed bus trajectories to extract 
headway times between consecutive services of the specified line. It has to 
assume (i) users wait exclusively for services of the line that they boarded 
in the transaction ignoring other lines that serve the same stops (ii) they 
do not have external information on bus arrivals. This is not always true 
as users could be waiting for more than one bus number. They also can 
have more information about reliable bus arrivals from experience, or 
digital apps which estimate bus arrivals. Given these assumptions we 
assigned a uniformly distributed user arrival time to the bus stop within 
the corresponding headway.
 Thus, we generated a MATSim activity plan for each CEPAS user, 
assigning dummy activities between given or estimated arrival and 
departure times to the public transport system.

4.4 Simplification of the Network and Mobility Simulation

As only public transport vehicles are simulated, a detailed topology of 
the road network is not necessary. A reduction in the number of links and 
nodes of the road network represents a direct reduction in the MATSim 
mobility simulation computation time as its complexity is proportional to 
the network size and the number of agents. Thus, as Fig. 3 shows, a single 
link precedes each public transport stop (dwelling link) and a single link 
connects each pair of consecutive stops. If two stops are consecutive in at 
least one line then a link was created between them.
 As mentioned before, the original MATSim mobility simulation is 
based on queues of vehicles at every link of the road network, depending 
on its corresponding capacity. That’s how it accounts for the effect of car 
congestion on buses or vice versa. Without information about cars, but 
many observations of buses travelling, we introduced a stochastic travel 
time model, where the speed of buses on each link is drawn from a normal 
distribution; the parameters of which vary by time of the day and are 
the result of a multinomial regression model estimated from the speeds 
observed between stops from the trajectory reconstruction step (Fourie 
2014). The parameters and the results of the regression estimation will be 
discussed in the following section.
 With the modelled dynamic distributions, we modified the standard 
MATSim link dynamics (the queue model). Now, when a vehicle enters 
a link after a dwelling operation, a speed value of the link’s distribution 
for the corresponding time of the day is sampled. During that time the 
vehicle “goes to sleep” and afterwards it appears at at the entry to the dwell 
operations link where it will queue up to allow passengers to board and 
alight. As our procedure does not reconstruct train trajectories yet, the 
simulation uses the standard queue model for the rail mode (as trains in 
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subway systems have less interaction with other vehicles this approach is 
not far from the real behaviour).

4.5 Speed Regression Model

As shown by Sarlas and Axhausen (2015), the speed of vehicles in a 
network link are not only related to the level of demand on the link, 
but also to the network topology, presence of signalling systems and 
surrounding urban density and activity level. While their study calculated 
average travel times for the entire Swiss road network of private and public 
transport, our investigation focuses on determining observed speeds at any 
given time of day as function of network topology and indicators of the 
level of activity and demand that can be derived from the smart card data. 
The estimation results are shown in Table 1.
 The model predicts the natural logarithm of speed (m/s) as a function 
of 15 variables listed in the table. Variable names in bold denote dynamic 
quantities that change on a per second basis. Derive all other variables 
from the network topology. The table shows the estimated value of the 
parameter, followed by the t-value. The last column shows the relative 
importance of the variable in terms of its contribution to the multiple R 
squared value listed at the bottom, using the method of Lindeman et al. 
(1980), implemented in the R statistical analysis platform (R Core Team 
2014) by Grömping (2006). 

Fig. 3. Simplification of the MATSim network topology, showing stop to stop links and dwelling links 
before the stop
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 A Java class was created to calculate the topological variables, as 
well as to associate smart card transactions with network locations and 
use them to derive indicators of the level of activity and traffic that a bus 
might encounter between two stops at any given time of day. The variable 
names listed are relatively self-explanatory; often the natural logarithm 
of variables was used instead of their original values, in order for these 
variables to appear more normally distributed. Less self-explanatory 
variables are defined as follows:

Intersections per km: the number of nodes along the path of the bus 
between two stops that have more than one ingoing and one outgoing link 
or two pairs of parallel ingoing/outgoing links (nodes denoting changes 
in direction for one-way or bidirectional roads, respectively, therefore not 
intersections), divided by the length of the path in kilometres.

Fraction of path with bus lane: a number of road segments in Singapore 
have bus-only lanes in the leftmost lane, that are either exclusively for 

Table 1. Coefficient estimates of a multinomial regression model predicting the natural logarithm of 
bus speeds between stops (m/s)

Estimate t-value Relative 
importance 

Intercept 3.07E-01 6.48

Intersections per km 5.07E-03 7.99 6.87%

Fraction of path with bus lane 3.54E-02 9.17 0.49%

Number of passengers tapped in –1.55E-06 –20.13 3.38%

Avg. number of intersections per roving sq. km –7.32E-04 –24.98 13.60%

Avg. degree of intersection nodes along path –5.07E-02 –14.77 4.67%

Right turns made at intersections –7.46E-02 –12.06 2.47%

Left turns made at intersections –1.29E-02 –2.06 0.28%

Right turns passed at intersections –3.47E-02 –14.47 2.67%

Left turns passed at intersections –2.45E-02 –10.56 1.59%

Number of nodes within traffic control buffer –3.12E-02 –30.25 8.99%

Path length (log) 4.81E-01 64.87 21.81%

Number of arrivals at destination stop per day (log) –3.72E-02 –14.90 2.61%

Number of nodes in path (log) –6.42E-02 –11.71 2.97%

Path length over Euclidean distance (log) –3.83E-01 –24.19 4.33%

RMS radians turned (log) –9.66E-03 –4.78 2.19%

Activities in progress per roving sq. km (log) –2.28E-02 –11.26 6.19%

Smart card transaction rate per roving sq. km (log) –7.28E-02 –29.90 14.90%

Multiple R-squared: 0.2054, Adjusted R-squared: 0.2053 
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bus during the entire day or during peak hours. This variable denotes the 
fraction of the path that has such a bus lane. It does not take account of 
exclusivity by time of day, so this is a static variable.

Total number of passengers tapped in system-wide: This variable denotes 
the general accumulation of passengers in the entire public transport 
system and is therefore an indication of overall system load by time of day.

Average number of intersections per roving sq. km: For each node in the 
path between two stops, draw a circle with a 1 km² area and count the 
number of intersections within that area according to the definition stated 
earlier and then divide the sum by the number of nodes in the path.

Average degree of intersection nodes along path: For each intersection 
along the path count the number of links that meet in the node as a sign of 
its relative complexity; the more links that meet at an intersection affects 
the signaling times.

Right turns made at intersections, etc.: When a bus has to take a right 
turn at an intersection it generally takes longer than taking a left turn, as 
the estimates of these variables clearly reflect. In fact, making a left turn 
does not seem to have much effect on the model as reflected by its low 
t-value, despite the large sample size of more than a hundred thousand 
stop-stop combinations used in the estimation.

Number of nodes within traffic control buffer: The locations of traffic 
control signals were supplied by the Land Transport Authority as a 
geographically encoded shape file. This variable records the number of 
nodes in the path of the bus that fall within a buffer of 30 meters from a 
traffic control signal.

Number of bus arrivals at destination stop per day (log): This variable 
accounts for the traffic at the destination stop, with the expectation that 
the more services offered at the stop, the longer a bus is likely to wait in a 
queue before it can perform dwell operations.

Number of nodes in path, path length over Euclidean distance, RMS 
radians turned: These variables attempt to capture the degree of ‘friction’ 
between the two consecutive stops that prevent the bus from reaching top 
speed.

Activities in progress per roving sq.km (log): For each node in the path 
between the two stops, draw a circle with a 1 km² area around the node 
and retrieve all smart card transactions recorded at the public transport 
stops within the circle. It assigns each boarding transaction a value of -1 
and each alighting transaction a value of +1 and finds the running sum of 
the values by time of day. We subtract the minimum of the running sum 
from all its values and uses the resulting set of values as an indication of 
the number of activities that take place within the circle. For a given time 
of the day the value of the running sum at each node is read from a table 
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and the average of these values across all nodes in the path is used in the 
regression.

Smart card transaction rate per roving sq. km (log): For each node in the 
path between two stops at a given time of day, we calculate the 15 minutes 
moving average of the total number of transactions taking place per second 
within a 1 km² circle around the node and use the average of these values 
across all nodes in the path. This value is used as a sign of the general level 
of traffic that the bus encounters along its path between stops.
 A correlation analysis of the variables used in the estimation shows 
that some variables have high degrees of correlation for obvious reasons; 
for instance, the number of left and right turns taken at intersections are 
obviously dependent on the number of intersections encountered. The 
variables describing the degree of ‘friction’ encountered along the path are 
also positively correlated, while path length and number of nodes within 
traffic control generally increase with the number of nodes in the path. 
Exclusive bus lanes also appear to be associated with stops with a large 
number of services arriving per day.
 The model might therefore suffer from a significant degree of 
multicollinearity; however, estimated variable coefficients are stable for 
different sample sizes and adding new variables to the model do not lead 
to erratic changes in estimated values. But correlated variables could, 
arguably, be replaced by their first principal components to remove 
collinearity effects while retaining predictive power, as done in principal 
component regression. 
 The current estimation of the model does not take account of spatial 
autocorrelation. An initial investigation of the residual (using a k-nearest 
neighbour approach on the destination stop to define the neighbourhood 
matrix used in spatial autocorrelation models) does show a significant 
degree of spatial autocorrelation that varies by time of day, with a maximum 
value of Moran’s I of 0.12. Effects of spatial autocorrelation will be further 
investigated in future studies, however as would be seen in the validation 
section to follow, the current ordinary least squares estimation already gives 
very reasonable predictions of speed and resulting passenger travel times. 
 The MATSim link dynamics model uses the predicted logarithm value 
of speed from the regression model for the given time of the day as the 
mean for the normal distribution to sample the final speed value from and 
the standard deviation of the distribution used for sampling is that of the 
residual for predicted speeds within 0.5 km/h of the mean.

4.6 Dwell Time Model

In Sun et al. (2013) the authors show how different bus configurations 
translate into different rates of boarding and alighting. Furthermore, from 
a study of the Singaporean smart card data and knowledge of the bus type 
associated with each vehicle identifier in the data, they derived a model of 
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dwell time variability as a result of boarding and alighting transactions 
and the number of passengers on board the bus. The most significant 
effects could be observed when the bus is full and it is impossible for 
passengers to board until enough passengers have alighted, as could be 
seen in Fig. 4.
 Hence, this variable dwell-time model was incorporated in the 
MATSim simulation. As will be seen later in the validation section, 
simulated results from the model fits very well with observed values.

5. VALIDATION AND PERFORMANCE

We ran the modified MATSim simulation model for 50 iterations and 
compared various measures of system performance against the original 
smart card data and the trajectory reconstruction-related data.

5.1 Speed

Fig. 5 compares distribution of the bus speeds between stops in the 
simulation against the speeds derived from the trajectory reconstruction 
process. Both the shape of the distributions and absolute numbers 
correspond very well.

5.2 Headways, Dwell Times and Bus Bunching

Figure 6 shows the distribution of the headways in the simulation versus 
those derived from the trajectory reconstruction process. In its current state 
the simulation appears to produce too many short headways; this is due 
to somewhat excessive bus bunching that occurs during the simulation, 
reducing the headway between consecutive buses to nearly zero. 
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 In terms of the headway variability, it shows that the simulation 
produces increasing headway variability with increasing number of 
stops along the route, however the effect is much more pronounced in the 
simulation.
 It could be seen from the joint distribution of headway versus number 
of stops along the route that the simulation produces many headways in 
the 0-1 minute bin, which indicates bus bunching. This behaviour in the 
simulation is probably largely due to the first-in-first out queue dynamics 
of the simulation that prevents buses of the same service from passing 
each other. Therefore, we intend to investigate passing behaviour in future 
iterations, as buses of the same service can pass each other in reality when 
the first bus is already engaged in a dwell operation at a stop. 
 As the trajectory reconstruction process does not extrapolate the 
trajectories beyond the last recorded transaction for a circuit run, 
headways for the stops towards the end of a route might be inaccurate, 
which accounts for the lighter shading of the joint distribution of headway 
versus stop number in the smart card data. However, the distribution of 
the headways does appear considerably narrower for the smart card data 
than what the simulation produces. We are not aware of any bus bunching 
control measures in operating the buses, whether it is centralized control 
from the operation centre, or by intelligent actions of the bus drivers 
themselves. Such measures would naturally account for the increased 
reliability of services. However, it would also be worth investigating 
if allowing buses of the same service to pass each other when one bus is 
already occupied at a bus stop, serves as a bunching control measure in 
itself.

300,000

200,000

100,000

0

N
u

m
b

e
r 

o
f 

st
o

p
-t

o
-s

to
p

 s
ta

g
e

s

0                           20                        40                          60

Bus speed (km/h)

Source
Simulation

Smart card

Fig. 5. Distribution of bus speeds from the smart card trajectory reconstruction  
process and the simulation



Chapter 8: Using Smart Card Data for Agent–Based Transport Simulation 149

 In Figure 7 the dwell time of buses in the simulation is compared 
against those derived from the trajectory reconstruction process. In terms 
of absolute numbers, nearly 1 million dwell operations with zero length 
occur in the simulation; these are cases where no boarding or alighting 
transactions take place. In the trajectory reconstruction, dwell operations 
that have been interpolated are assigned a zero dwell time. Dwell 
operations where only a very small number of transactions were recorded 
within a time span of less than six seconds, were assigned an arbitrary 
lesser dwell time of that value, which is responsible for the second spike 
in dwell times that could be seen in the histogram. In terms of absolute 
numbers, the sum of these trivial cases for the smart card data corresponds 
reasonably well with the number of dwell operations in the simulation 
where no passengers board or alight. 
 Because the absolute numbers of dwell operations for the non-trivial 
cases are different for the simulation and the smart card data, we compared 
the distributions in terms of their density in the second part of the figure, 
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which reveals reasonably good correspondence in terms of distribution 
between the simulation and the dwell times from the trajectory 
reconstruction process.
 The trajectory reconstruction process produces 1.58 million dwell 
operations compared with the 1.7 million dwell operations recorded in the 
simulation; the difference between these numbers is due to the trajectory 
reconstruction process not extrapolating the trajectories of buses beyond 
the first and last recorded transactions. So, if the first recorded transaction 
for a bus occurs at a stop after the first in its route profile, or the last 
recorded transaction is before the end of the line, then no dwell operations 
were created for the stops before the first transaction, or after the last 
transaction. 
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 Figure 7 also shows that, of the 1.7 million dwell operations in the 
simulation, nearly one million have zero duration, meaning that no 
passengers were picked up or dropped off. This means that buses in the 
simulation only pick up or drop off passengers approximately 40% of the 
time. Consequently, the simulation also produces more dwell operations of 
longer duration, as fewer dwell operations have to serve the same number 
of passengers. This might be a contributing factor to the higher incidence of 
bus bunching observed in the simulation.
 If we assume that the actual total number of dwell operations also 
comes to 1.7 million, then the number of cases where buses don’t take 
on any passengers at stops for that particular day in the actual transport 
system which comes to approximately 580,000, which accounts for 
approximately 34% of all dwell operations, meaning that buses in reality 
pick up or drop off passengers 66% of the time, in comparison to the 
40% observed in the simulation. This difference might be due to the best 
response routing in the simulation resulting in increased coordination 
between the agents and the buses, with agents selecting services that get 
them to their destination with less access waiting time on average than 
the service that they picked in reality. Agents might also not be as averse 
to crowding as people in reality, causing them to opt for the next empty 
vehicle less often; a hypothesis that will need further investigation into the 
ridership of vehicles in the simulation versus those in reality. 
 The space-time diagram shown in Fig. 8. compares the trajectory 
reconstruction results against the simulation for a bus line with 74 stops 
along its route. While the shapes of the trajectories compare reasonably 
well, it could be seen that the simulation produces more bus bunching than 
what this bus line has experienced in reality, confirming what is apparent 
in the histogram in Figure 6.

5.3 Passenger Travel Time Measures

Fig. 9 compares the simulation trip travel time with the smart card data, 
where access and egress walking and waiting times have been extracted 
from the times recorded in the simulation. The histogram therefore 
compares only the sum of in-vehicle travel times and transfer walking and 
waiting times.
 Fig. 10 similarly shows very good agreement between the bus stage 
in-vehicle times for the simulated versus real values, although smart card 
values appear slightly skewed to longer times. While the simulated speeds 
are stochastic, to display the same range of values as those observed in 
reality, it is possible that not all dynamic effects have been adequately 
captured captured for perfect agreement, or the agents are routed more 
optimally than passengers are in reality. As we do not know when 
passengers board or alight from trains, we cannot construct a similar 
graph for rail modes. However, the good agreement observable for trip 
travel time across all modes gives confidence that simulation of the rail 
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mode is reasonably accurate, as passengers would have switched away or 
switched to using the subway during the simulation if this transport mode 
performed markedly different from reality.
 Fig. 11 compares density of the transfer times in the simulation against 
those derived from the smart card data. In this case we do not display the 
histogram of transfer times, as the absolute numbers inferred from the 
smart card data are inaccurate; especially for the train mode we do not 
know exactly which routes passengers have taken, or exactly how long they 
have spent in transfer. The absolute numbers suggest that times in MATSim 
might be somewhat shorter than those experienced in reality, possibly due 
to the co-ordination that occurs due to best response re-routing during the 
simulation, as alluded to earlier. 

Fig. 8. Comparison of space-time trajectories of CEPAS (top) versus simulation (bottom)
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5.4 Computation Times of Simplified Simulation

Using only best response re-routing, the simulation reaches a relaxed state 
in very few iterations. After only five iterations very little change in the 
average score of agent plans could be observed with increasing iterations. 
From experience we found that one only needs to run a 25% sample of all 
agents to get realistic results; all counts recorded in the validation section 
were thus from such a sample and were scaled up by multiplying them by 
four. 
 The experiments were run on a latest generation 24 core Intel Xeon 
computer, with 64 GB of RAM. The initial routing of all agent plans takes 
approximately seven minutes, while a single iteration takes approximately 
four minutes. It is therefore possible to have usable results in under an 
hour. In the case of a standard MATSim simulation of both public and 
private transport, many more iterations are required for the system to reach 
a relaxed state, and a full simulation can take up to two days to complete. 
The simplified simulation therefore represents a big step forward in terms 
of computation time performance.

6. APPLICATION

To show the potential of the simplified public transport simulation we 
designed a fictitious case study. In the proposed scenario we split one 
of the longest bus lines in Singapore, which has more than 90 stops. The 
line was split according to the method used in Lee et al. (2012) in order to 
minimize the number of transfers resulting from the split; in this case the 
optimal split point happened to be close to the centre of the route. Agents 
were allowed to re-route their public transport routes within the MATSim 
co-evolutionary algorithm until they reach equilibrium (100 iterations). 
That means the agents who were taking the long line or any other line in 
Singapore can decide to take the new split line or switch to another transit 
line. As in the case of the validation study, we simulated a 25% sample of 
the population, with vehicle carrying capacities reduced to a quarter of 
their real-world values. The following section compares performance of the 
line split against the baseline case.

6.1 Impact on Bus Bunching

Fig. 12 shows the space-time diagram of the bus service before and after 
the split, with cases of bus-bunching highlighted in red and line thickness 
increasing with bus ridership. The plot confirms that the incidence of bus 
bunching is significantly reduced during the morning peak hour and 
that headway reliability improved considerably, especially towards the 
end of the bus route. Note that we replicated departure times from the 
start of the service for buses departing on the second part of the line split, 
which means that these services start with an inherent lack of reliability. 
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Furthermore, even though we reduced the number of stops in the two 
resulting routes, it is clear in the base case that bus bunching can result 
relatively early and that 45+ stops might still be too many bus stops for a 
reliable bus service.

6.2 Excess Waiting Times

Excess waiting time (EWT) is one of the most common reliability indicators 
for high frequency public transport services (e.g., a service frequency of 
five or more buses per hour). Using the definitions used by the London 
transport authorities, EWT assessment includes calculation of the following 
two elements:
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Fig. 13. Comparison of the excess waiting time before and after a long bus line has been split into 
two separate routes

Average scheduled waiting time (SWT): the time passengers would wait, 
on an average, if the service ran exactly as scheduled, assuming that 
waiting time is, on average, half of headway time:
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where s represents each service of a bus line (excluding the first one), Hs 
is the scheduled headway of the service s and the previous service, and 
Ha Hs is the real headway of the service s and the previous service. EWT is 
simply the difference between AWT and SWT and represents the additional 
waiting time experienced by passengers.
 The formulas have this form because AWT and SWT are weighted 
averages of all the service headways of a line and the weight is the 
real headway. So, if the line is designed to have a constant headway, the 
calculation of SWT could be simplified to SWT = 0.5Hs.
 Fig. 13. compares the calculation of the EWT of the base case against 
the split line scenario, in one direction of travel. The plot looks very similar 
in the opposite direction; EWT reverts to zero at the point with the line 
split so passengers experience better reliability towards the end of the 
route.

7. CONCLUSION

From the section on validation, the results so far seem to agree well for 
most part with observation. Most importantly, the simplified simulation 
manages to capture dynamic bus bunching effects; in fact, the effect might 
be slightly exaggerated in the simulation. The possibility of mitigating 
this effect through the implementation of passing behaviour in the 
queue simulation should be investigated. The simple fictitious case study 
also illustrates that the simplified simulation could be used to evaluate 
proposed changes to the public transport system. 
 The reconstruction of train trajectories is a very interesting problem 
as train-to-train transfers are not explicit in the CEPAS data. Furthermore, 
public transport passengers need to be located to buildings that are close to 
public transport stops, to better simulate access walking and waiting times. 
 The subway stops are also easily accessible in the simulation and do 
not take account of the time that it takes for passengers to travel all the 
way down to station entrances. Consequently, there is a slightly increased 
preference for the rail modes in the simulation compared to reality. 
 It was our experience that the first-order analyses and operations 
on the smart card data, such as the conversion to trajectories, the speed 
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regression and the models of boarding and alighting, are relatively 
straightforward to implement. The task of integrating results into a 
simulation model capable of providing insight into future transport system 
performance was a radically more involved task. The bugbears of systems 
engineering, namely unanticipated interactions and emergent phenomena, 
come into play even in this highly simplified integrated model, because 
of the dynamic and disaggregate interacting nature of the agent-based 
simulation. In design iterations leading to the current state of the system, 
it took many hours of tinkering with its components in order to isolate 
cause and effect and a number of challenges still remain, as highlighted 
throughout the section on validation of results. 
 Whether the integrated modelling approach ultimately proves 
worthwhile in predicting future transport system performance or not, the 
value of smart card data during all stages of the design and evaluation 
is undeniable. Whenever confronted with unexpected behaviour in the 
simulation, we found ourselves constantly turning to the data for answers, 
trying to infer what actually happens in reality. We expect that this will 
become even more the case as data could be potentially enriched with bus 
GPS traces and the mystery of where passengers are in the train system 
during the time between transactions at station entrances is revealed 
through rigorous statistical analyses and the promise of co-ordinated data 
from underground cell phone transceivers. 
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A B S T R A C T
 This chapter discusses the use of smart card data for evaluation
 of the transport system from the user’s perspective. Tools are
 presented that, using passive data from the public transport
 system, can help transport planners to achieve their goal of
 improving mobility and quality of life. Using as an example the
 case of Santiago, Chile, it is shown how detailed analyses can be
 performed using passive data, contributing to the understanding
 of the system at a very low cost. The existence of broad and precise
 temporal and spatial data, allows making analyses at different
 levels of aggregation that are critical to understand the quality of
service of urban public transport systems.

1. INTRODUCTION 

The evaluation and monitoring of transport systems is critical for 
planning and for supporting decision making related to a city and its 
transport system. Traditionally, these procedures have been supported 
with survey data that contain detailed information based on respondents’ 
declarations and measurement data of specific aspects of the transport 
systems of interest. However, due to the high costs of surveys and 
measurements, these methods are typically sparse in terms of time and 
space coverage. Conversely, the incorporation of technological devices in 
the daily operation of a public transport system has provided significant 
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quantities of passive data. These databases are provided (and limited) by 
the technological devices available, which generate large databases with 
regard to specific aspects of passenger and vehicle movement. Additionally, 
because these devices require limited human intervention, they are usually 
particularly reliable in what they detect; however, what the technological 
devices detect is not necessarily what planners and decision makers 
require. The objective of this book chapter is to show that it is possible to 
estimate the level of service, mobility and accessibility indicators using 
passive data. Specifically, from a real case in the public transport system 
of Santiago, Chile, we will focus on the use of passive data from automatic 
fare collection (AFC) and automatic vehicle location (AVL) systems that are 
complemented with geographic information system data (GIS).
 Bagchi and White (2005) recognise the potential of smartcard data to 
analyse boarding transactions, time-space distribution and turnover rates 
over time; however, they have also identified a series of problems. In AFC 
systems where passengers are not required to tap their cards when exiting 
the transport system, trip destination information is not available. In 
addition, no journey purpose, attitudes or quality of service information is 
recorded, and trip identification is based on rules that require validation. 
Researchers have observed these limitations as opportunities, and different 
authors have proposed methods to estimate an alighting bus stop (Zhao 
et al. 2007; Trepanier et al. 2007; Munizaga and Palma 2012), to link trips 
and analyse transfer behaviours (Seaborn et al. 2009; Charikov and Erath 
2011; Devillaine et al. 2013) and to estimate a trip’s purpose (Charikov 
and Erath 2011; Devillaine et al. 2013; Lee and Hickman 2014). Certain 
authors have also analysed travel behaviours at different levels: walking 
access behaviour (Utsonomiya et al. 2006), travel patterns and variability 
(Morency et al. 2007; Ma et al. 2013) and the location of regular activities 
(Charikov and Erath 2011; Amaya and Munizaga 2014).
 In the next section, the levels of service indicators found in the 
literature are briefly discussed. Then, using passive data, the construction 
of the different levels of service indicators for the public transport system of 
Santiago is explained and shown at different aggregation levels. The final 
section presents some concluding remarks.

2. LEVEL OF SERVICE INDICATORS

Measuring a public transportation system’s level of service has always 
been a concern for planners, operators and regulators. Initially, indicators 
focused on effectiveness and efficiency (Fielding et al. 1985). Based on 
TRB (2003), public transport indicators can be divided into performance 
or operation indicators and level-of-service indicators. Eboli and Mazzula 
(2012) discussed the fact that level-of-service indicators may vary 
depending on whether the operator, user or community perspective is 
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taken. In this chapter, we focus on the perspectives of the user and of the 
potential users to evaluate the attractiveness of the public transport system 
and the stability of demand.
 Considering the attributes that are relevant to measure the quality of 
service from the user’s perspective, the first and most significant source 
of information is the list of attributes that affect user satisfaction (or 
perception). The literature related to factors influencing user satisfaction 
is extensive (Ortúzar et al. 1997; dell’Olio et al. 2010; Hensher et al. 2003; 
Tyrinopoulos and Antoniou 2008; Yañez et al. 2010 and Donoso et al. 2013). 
Another source of information regarding factors that affect the level of 
service from the user perspective is provided by the factors that determine 
users’ route choices within the public transport network (e.g., dell’Ollio et 
al. 2011, Raveau et al. 2014 and Chapter 4 this book). Donoso et al. (2013) 
argue that the relative valuation of the factors that influence route choice 
may differ from the ones obtained when measuring user satisfaction. This 
difference is because the decisions (i.e., route choice or survey response) are 
usually made under different constraints, even though in both cases, the 
underlying function is the same (i.e., latent individual utility function); this 
may affect the estimation of the marginal utility of a specific factor. Despite 
this fact, the attributes that systematically appear to be relevant are: 

 • Travel time including walking, waiting, in-vehicle, and transfer

 • Frequency compliance

 • Coverage

 • Seat availability

 • Regularity of waiting and travel time

 • Number of stages/transfers

 • Public transport travel time compared to car travel time

The literature provides examples of the calculation of level-of-service 
indicators from passive data. Among the most relevant, Bertini and El-
Geneidy (2003) calculated frequency, regularity and accessibility indices 
and load profiles for the public transport system of Portland (Oregon, USA). 
Similar calculations have been performed by Trépanier et al. (2009) for 
Gatineau (Canada). Bagchi and White (2005) calculated trip rates, transfers 
within linked trips, and turnover rates for the public transport systems 
of two cities in the UK. Additionally, Utsunomiya et al. (2006) calculated 
access distances and examine the travel patterns of users. In systems where 
tap-off or exit validation is also required, the scope of indicators that can 
be calculated increases. Park et al. (2008) calculated indicators including 
transfer rates and travel times for the public transport system of Seoul, 
Korea, which were complemented by Jang (2010) with the identification of 
critical transfer points. 
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3. APPLICATION TO SANTIAGO

The Santiago public transport system, which is called Transantiago, is a 
multimodal integrated system (i.e., bus and metro) that serves a population 
of 6.6 million inhabitants. It has over 6,000 buses, all equipped with GPS 
devices, operating daily in a network that contains 70 km of segregated 
bus ways and over 11,000 bus stops. The integrated metro network has 5 
lines, 103 km of rails and 108 stations, and is currently expanding. The fare 
scheme is based on the trips taken by users; a flat fare is applied to trips 
through a maximum of three stages and must be used within two hours. A 
small surcharge, which is higher during peak-use hours, is applied to trips 
that use the metro network. The payment system is based on a contactless 
card called “bip!”, which is the only method to pay in the system’s buses 
and by far the most popular method to pay in the metro, representing 
97% of the payment transactions of the 4.6 million daily trips via public 
transport. Given this fare structure, tap-off validation is not required in 
buses or the metro.
 Previous work with these data has generated origin-destination 
matrices at the bus stop level that are based on the alighting estimation 
method proposed by Munizaga and Palma (2012) and the trip-stages 
linking procedure proposed by Devillaine et al. (2013). Additionally, a time-
space diagram for all buses operating on all routes has been developed, and 
bus speed profiles are obtained using the methodology proposed by Cortés 
et al. (2011). Using these processes, a detailed database of trips that contains 
a boarding stop, an alighting stop, a sequence of routes taken, travel time, 
transfer time and the waiting time at transfer points can be obtained. For 
buses, the information generated includes the detailed trajectory of each 
bus along its route, speed profiles and the load profiles per route.
 These estimations have been validated by Munizaga et al. (2014) using 
exogenous data from measurements, surveys and personal interviews. 
Although the validation is positive, showing a correct estimation for over 
80% of the cases, there are a significant number of cases in which the 
estimation is not correct. Therefore, for the estimation of level-of-service 
indicators, it is important to apply filters and corrections, which ensure that 
the real travel experience is well represented. It is particularly relevant to 
verify all of the extreme cases as well, separating a poor travel experience 
from a wrongly estimated trip. A detailed analysis of suspicious cases was 
performed by Núñez (2015). 
 Using the filtered information, the objective of developing global 
indicators to monitor system performance is investigated. From the 
information available, we calculate the travel time, number of stages 
per trip, travel speed and distance. These indicators can be computed at 
different levels of aggregation. 
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3.1 Global Indicators

The global system indicators calculated for data corresponding to a week in 
May 2014 are presented in Table 1. The table shows that the average values 
are quite reasonable for a city of 6.6 million people, showing an average 
travel time that is marginally above 30 minutes and 1.4 stages per trip. 
Considering peak-use hours only, the average travel times are marginally 
higher, particularly during the afternoon peak when the travel speed is 
lower. It must be noted that the travel time and the other indicators only 
consider the part of the trip that can be identified from the passive data 
available (i.e., they do not include the walking time both before the first 
stage at the origin and after the last stage at the destination). The waiting 
time at the origin is estimated from the observed headways of the bus line 
boarded or from the programmed headway if the first stage occurs in the 
metro.

Table 1. Global indicators in May 2014

Trips [per/day] Travel Time [min] Stages per Trip Speed [km/h] Distance [km]

Day 4,002,525 31.3 1.4 14.7 7.7

Morning Peak 415,090 32.9 1.4 15.0 8.3

Afternoon Peak 401,941 34.5 1.4 14.1 8.1

To examine these values with more disaggregation in time, Figure 1 shows 
different indicators for 30-minute periods constructed based on the time 
of the first validation. The data shows that there is a significant peak in 
the travel time, number of stages and trip distance for trips initiating at 
approximately 5AM, which is significantly earlier than the morning peak 
hour in terms of the number of trips, which occurs near 7:30AM. This shows 
a concentration of trips with poor travel conditions in terms of the distance 
and the number of stages required to complete the trip in the early hours of 
the day; this finding is likely caused by those users that travel in these poor 
travel conditions being forced to depart earlier to arrive at their work or 
study locations on time. There is no such effect during the afternoon peak 
because the time concentration for the return trip depends on the location 
of the activities that the users are conducting and not on their residential 
locations. Those long trips likely occur in the afternoon as well but are not 
apparent in the average values presented at this level of aggregation.

3.2 Indicators at the Municipality Level

The Santiago metropolitan area contains 37 municipalities, each of which 
is well defined in terms of its area; several sources of information are 
available at this level. Therefore, municipalities are a natural level of 
disaggregation for analysis. We consider this level to be appropriate to 
calculate indicators related to the spatial structure of trips on the public 
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transportation system. In Figure 2, we present two variables (i.e., travel 
speed and route directness), where the route directness is calculated by 
the route distance divided by the Euclidean distance. In this graph, each 
circle represents a pair of municipalities, and the circle area is proportional 
to the number of trips observed in that OD pair. This particular graph was 
developed for the trips that arrive at their destinations between 8AM and 
9AM. The data shows that the average travel speed varies significantly 
depending on the municipality where the trip originated, ranging from 
values below 10 km/h to values above 25 km/h on average. In addition, 

Fig. 1. Trips, stages, travel time, distance, speed and RD/ED

Fig. 2. On-route speed vs. route directness
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large differences are observed in terms of route directness, ranging from 
values near one to values above two. The combination of both effects is 
shown in cases such as the route from Recoleta to Providencia, where users 
face a low speed of travel and indirect routes. On the other extreme, the 
route from Puente Alto to Providencia exhibits one of the highest average 
travel speeds and direct routes. Intermediate cases can have direct routes 
but low speed (e.g., Santiago-Providencia) or high speed but indirect routes 
(e.g., Maipú-Macul). 

3.3 Indicators at Zone Level

To analyse the spatial effects of this system in more detail, a more 
disaggregated level must be used. For Santiago, we used the zoning that 
the Santiago transit authority (DTPM) uses for most of the analysis that 
they perform. The zoning, which is called “777”, has approximately 800 
zones and is compatible with the municipality zoning. At this level of 
aggregation, it is not possible to visualize the full OD structure; therefore, 
we focused on particular destinations to provide a few examples: the 
Santiago CBD (Santiago Centro); two zones with a mixture of activities 
that are residential areas and concentrated business and commercial 
activities (Providencia and Las Condes); and a high income residential zone 
(Lo Barnechea) that is located at the north eastern end of the city, which 
is a destination of many domestic work trips. Figure 3 shows the average 
travel time from each zone to Santiago Centro, Providencia, Las Condes 
and Lo Barnechea during the morning peak-use hours. Metro lines are 
outlined in red to illustrate the effect of certain important public transport 
infrastructure elements. The travel time intervals are shown by a colour 
code where blue is less than 30 minutes, and red is over 75 minutes. The 
values represented in that figure are the average values of the observed 
trips, which were calculated with at least five observations. A grey colour 
is used to identify cases in which information is not available (i.e., less than 
five observations). 
 The figures show that the city centre is not equally accessible from 
all possible origins. The presence of metro lines is associated with faster 
access to the city centre. It is also apparent that the relation between 
travel time and distance is not direct. Considering the other destination 
zones, Providencia and Las Condes can be reached in less than 30 minutes 
only from nearby zones and from zones associated with a metro line; 
additionally, few trips are shown with a destination in Lo Barnechea 
during the morning peak-use hours, and most require over 75 minutes. The 
trips with nearby origins can be made in less than one hour. This type of 
analysis can be performed for any location/period of interest.
 A similar analysis can be performed with the number of trip stages 
required to reach any specific destination at any time period. Additionally, 
this information can be compared between different periods of time. 
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Figure 4 shows the variation in the number of trip stages required to reach 
the city centre between 2013 and 2014. A negative difference represents a 
decrease in the number of trip stages, and a positive difference represents 
an increase. The colour code used ranges from blue for a large decrease to 
red for a large increase; yellow represents a mild change, either positive 
or negative, or none; white lines represent bus corridors with a segregated 
right of way; and black lines indicate the bus lines that move through 
the CBD. Figure 4 shows that there have been moderate or no changes in 
most of the zones (i.e., yellow dominates); however, there is a significant 
group of zones in the north western and western parts of the city where 
the number of trip stages required to reach the city centre has increased 
and, in some cases, significantly. This increase is explained by the closure 
of an important street in the city centre, which forced detours for all bus 
routes that used that street to travel outside of the CBD. Because all routes 
in the west and northwest connected the CBD using that street, passengers 
that could reach the central area without transfers in 2013 are now forced to 
make a transfer. This example shows that these indicators can be sensitive 
to changes in the system and ultimately to the behaviour of users.

T. Time [min] T. Time [min]

 Santiago Centro Providencia

T. Time [min] T. Time [min]

 
 Las Condes Lo Barnechea

Fig. 3. Travel times to access Santiago Centro, Providencia, Las Condes and Lo Barnechea from any 
origin zone, May 2014, morning peak-use hours
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3.4  Indicators at the Avenue Level

At the avenue level, bus flows, passenger flows and the speeds of buses 
can be observed. To compute these variables, all bus routes that use a 
specific corridor can be identified, and the GPS pulses, which are projected 
onto the path, are used to develop a time-space grid representation. In 
this representation, space is included as a linear change along the road. 
Segments of different lengths are defined such that traffic and demand 
conditions are homogeneous (Gibson et al. 2015). This representation allows 
for the calculation of bus flows and travel times, which are then aggregated 
into the average commercial speed using the methodology proposed by 
Cortés et al. (2011). Additionally, incorporating smart card transactions and 
their alighting-bus-stop estimations, we are able to obtain the number of 
boarding and alighting passengers per stop and the number of times buses 
stop at bus stops. Table 2 and Figure 5 show these values for Santa Rosa 
Avenue, where segments 3 through 5 correspond to a bus corridor with a 
longitudinally, physically separated right-of-way, as defined by Vuchic 
(2007). In the remainder of the segments shown, buses share the road with 
private cars (i.e., mixed traffic). Table 2 shows bus flows by segment, stops 
per km travelled by a bus and the summation of boarding and alighting 
passengers (i.e., demand). Figure 5 shows the average commercial speed by 
road segment and time period. The difference between segregated bus way 
segments and mixed traffic segments is clearly shown. 

Fig. 4. Variation in average stages per trip to the CBD between April 2013 and May 2014
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Table 2. Average bus flows, stops and demand per period at different sections of  
Santa Rosa Avenue

Flow (bus/h) Stop/bus-km Demand (pass/bus-km)

7.30-9 9-19 19-21 7.30-9 9-19 19-21 7.30-9 9-19 19-21

1 122 85 100 1.36  1.05 0.79 4.71 2.66 2.07

2 121 85 101 1.39 0.97 0.73 4.51 2.11 1.69

3 126 90 107 0.89 0.63 0.47 2.40 1.20 0.88

4 111 78 94 1.53 1.09 0.85 6.10 2.68 2.23

5 110 78 94 1.47 0.85 0.59 3.93 1.57 1.13

6 108 78 93 2.16 1.57 0.90 8.65 4.19 2.19

7 101 74 88 1.91 1.51 1.44 13.4 6.99 4.12

Total 114 81 97 1.53 1.09 0.78 6.25 3.06 2.05

Source: Gibson et al., 2015.

Section

Period

Fig. 5. Average commercial speed per section on Santa Rose Avenue

Source: Gibson et al., 2015.

3.5 Bus-stop-level Indicators

The relevant indicators at the bus-stop level are those related to bus flow 
and demand levels. Using the aforementioned time-space diagram, an 
interpolation procedure can be applied to estimate the instant when each 
bus passes through a bus stop, thus allowing the calculation of headways 
between buses and their variability. Additionally, for passengers boarding 
buses, a boarding bus stop is identified using the estimation of the instant 
when the bus was at the bus stop and of the validation time. The alighting 
stop or station is estimated using the method proposed by Munizaga 
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and Palma (2012), and the locations where activities are conducted are 
identified using the activity detection method proposed by Devillaine et 
al. (2013). This allows the computation of boarding and alighting flows by 
bus stop, bus station and metro station. Figure 6 shows two screenshots of 
a self-made visualization tool that permits the selection of different types 
of trip per day, mode, number of stages, and time to describe the origin-
destination structure. The selected trips are represented with their origin 
in the left side, and destination in the right side, using two identical maps. 
Yellow and purple circles are used to represent origin and destinations 
flows, using a proportional representation of volume.

Fig. 6. Visual representation of the origin-destination flows
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Figure 7 shows a histogram of the waiting times calculated at each of the 
more than 11,000 bus stops. The line shows the accumulated percentage 
(secondary scale) at each level of the histogram. In this figure, the waiting 
time is calculated from the headway observed (i.e., the time between the 
bus boarded by the user and the previous bus of the same line at that stop). 
Given that headway, a random value between zero and the headway is 
assumed to be the waiting time for this passenger.

Fig. 7. Bus waiting times in the first trip stage

3.6 Indicators at a Specific OD Pair (i.e., Trip) Level

One important variable to measure the quality of service in public 
transport systems is travel time. From the data available, we can estimate 
travel time for any specific OD pair. Prior to the development of these data 
processing tools, certain monitoring of travel times was performed using 
manual measurements in certain OD pairs from the boarding stop/station 
to the alighting one using a given (i.e., fixed) travel strategy (DICTUC 2011). 
Given the high cost of this type of measurement procedure, a small sample 
of three trips for each time interval and for 27 OD pairs. Figure 8 shows 
a comparison between the measurements recorded during the morning 
peak hours (i.e., 7 to 10 AM) of June 2011 and the travel times obtained 
from the OD matrix of April 2012 for a selected group of those OD pairs1. 
The white number inside each bar shows the number of trips registered 
in each OD pair. It is shown that the estimated average travel times are 
similar to the manual measurements with differences below 10% in all 
cases. Additionally, given that the estimated values have a larger number 

 1 The selected OD pairs for comparison are those in which the travel strategy has not been 
significantly affected by route changes, and a large number of observations is available.
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of observations, their variance can also be calculated; this was not possible 
with the three manual measurements. The data shows that the variability 
is significantly different between these OD pairs. It is also worth recalling 
that a large variability in travel times negatively affects the perceived 
quality of service.

Fig. 8. Comparison of manual measurements and estimated travel times

One advantage of the passive data used in this study is that it provides 
a large sample size, allowing the production of average figures and an 
analysis of their variability. An example of this is shown in Figure 9, where 
the average travel time for all trips of a specific length is shown with the 
corresponding travel time for the 5th and 95th percentiles. These results 
show that there can be significant variability behind the averages. As 
expected, the variability increases with distance in this case.

Fig. 9. Estimated travel time for different trip lengths and their variability
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4.  CONCLUDING REMARKS

This study presents tools that can be developed to monitor public 
transport systems, using information obtained from passive data. Detailed 
analyses can be performed using passive data and can contribute to the 
understanding of a system, its capacity and its performance at a low cost. 
Taking advantage of broad and precise temporal and spatial data, tools 
can be developed to monitor the system at different levels of aggregation 
to create and analyse average figures and the variability of phenomena of 
interest; thus, the proposed methods are critical to understand the quality 
of service of urban public transport systems.
 At an aggregate level, global indicators provide a general idea of the 
system magnitude and its average behaviour as well as certain differences 
over time. At the strategic municipality level, the gross differences 
between zones can be observed; these can then be analysed in detail at 
the zone level. However, the difficulty of working with a larger number 
of zones must be addressed. Graphic analyses can be helpful for this 
purpose and the use of GIS-tools to show the geographical information 
over large number of zones has shown to ease the analyses. Moreover, 
animated views of the geographical data can enrich the understanding 
of the information. The challenge of creating innovative ways to present 
these data arises as a new issue by itself. If the infrastructure is of interest, 
the likely proper unit of analysis is the avenue, road or railway where 
buses or trains are operating. More detailed analyses can be performed 
at the bus stop or station level, where vehicles and passengers flow; time 
distributions can also be observed in high resolution. Finally, this type of 
data also allows the analysis of specific trips or OD pairs.
 Using data from Transantiago, the public transport system of 
Santiago, Chile, this study has shown that it is possible to determine the 
level-of-service, mobility and accessibility indicators using passive data 
collected from automatic fare collection and vehicle location systems, 
complemented with data from geographic information systems. Significant 
effort is required in terms of the development of the methodologies, data 
management and the construction of the tools necessary to obtain the 
indicators from passive data; however, valuable results can be obtained 
from it and periodically replicated with new data at very low costs, if the 
methodologies and tools were already developed. A next step to improve 
the quality of this information is the inclusion of other passive data 
sources (e.g. smartphones) and some manual measurements (for those 
critical data that is impossible to obtain automatically) to complement 
the automatically collected data and enrich the information that can be 
obtained.
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A B S T R A C T
 Whilst smart card systems are becoming the standards among transit
 authorities, there is a growing need to valorize their collected data. Smart
 card data provides a continuous stream of passenger transactions that
 could be used to derive key performance indicators (KPI). This chapter
 presents methods used to calculate KPIs such as commercial speed,
 vehicle-kilometres, passenger-kilometres, schedule adherence and fare
 evasion for Canadian public transit networks. It shows the advantages
 of using smart card over traditional automated vehicle location systems
 (AVL) or automated passenger counting systems (APC), because with
 smart card KPI could be broken down by fare type or any other specific
 attributes linked to transactions. However, there are limitations to this
 approach because not all passengers use a smart card. Hence, fusion of
 data is somehow needed to complete the KPI portrait.

1. INTRODUCTION 

The primary role of smart card fare collection systems (or AFC, automated 
fare collection systems) in public transport agencies is to facilitate revenue 
management. The continuous collection of transaction data can also be 
seen as an indirect sight of performance of the public transport systems, for 
both supply and demand. As a matter of fact, the smart card system data 
reveals spatio-temporal information on users, vehicles and routes. These 
spatial-temporal observations could be used to derive, calculate and tabulate 
key performance indicators (KPI) of the public transport network such 
as commercial speed, vehicle-kilometres, passenger-kilometres, schedule 
adherence, etc.
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 This chapter presents KPI that could be calculated from smart card 
data with the help of innovative processing methods. It will also emphasize 
the advantages of using smart card over traditional automated vehicle 
location systems (AVL) and automated passenger counting systems 
(APC). The chapter begins with some key background elements on this 
topic. Then, presented a series of indicators; descried the estimation 
method as well as examples. The chapter concludes with a discussion on 
the challenges related to the continuous estimation of the proposed KPI, 
current limitations and research perspectives.

2. BACKGROUND 

Since the pioneer work of Bagchi and White (2005), a lot of research has been 
done to value the use of smart card data in public transportation. In this 
review, it will focus on performance indicators and destination estimation, 
two elements that are essential to the work presented in this chapter. For a 
broader view of the potential of smart card data, please refer to Pelletier  
et al. 2011.

2.1 Performance Indicators

Through the years, many performance indicators became the standards 
across the public transit industry. The Transit Capacity and Quality of 
Service Manual (Kittelson and associates, 1999) uses six performance 
measures to evaluate the service: service frequency, hours of service, service 
coverage, passenger loading, reliability and transit vs. automobile travel 
time. There are many examples of transit performance evaluation using the 
TCQSM (among others, Perk and Foreman 2003; Caulfield and O’Mahony 
2004). In many cases, the KPI use surveys or on-board counts that provide 
static figures instead of continuous measurements.
 The technology has evolved with the advent of Automated Vehicle 
Location systems (AVL). In these systems, vehicles are equipped with on-
board GPS that record location as well as bidirectional telecommunications 
with a central server. This way, AVL can give a continuous evaluation of 
vehicle-specific indicators like commercial speed and schedule reliability. If 
the system is coupled to an automated passenger counting system (APC), 
more could be done to evaluate load profile and ultimately better manage 
the bus fleet and the service provision (Gillen et al. 2001; Nurul Hassan et 
al. 2013). Nowadays, real-time AVL data can be used to provide adjusted 
schedules to the passengers through Passenger Information Systems (PIS), 
even for smaller transit authorities (Cachulo et al. 2012). 
 As demonstrated by Trépanier et al. (2009), KPI can also be obtained 
through the analysis of smart card data. Because smart cards could be 
used to follow the behaviour of passengers and associated to specific fare 
categories, KPI could be ventilated through passenger and fare types, or 
made specific to given segments (i.e., passengers that boarded on that part 
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of the city, at this time, etc.). However, as in most smart card system, there 
is no personal information on travellers, although data fusion approaches 
could provide more insights on the personal attributes related to smart card 
transactions (Kusakabe and Asakura (2014) and Chapter 5 in this book).

2.2 Destination Estimation Algorithm

Many smart card automated fare collection systems collect the fare at 
vehicle entrance and stations (“tap-in”) and not at the exit (“tap-out”). 
Because transactions are only recorded the entrance location, new methods 
had to develop to estimate the alighting (exiting) point of the user making 
his journey on the public transport network. Trépanier et al. (2007) 
proposed a method based on sequence of trips made by a single card during 
a day. Examine each card’s transactions separately. For each boarding, 
retain the sequence of stops that follows as potential candidate for alighting 
(see Figure 1). Retain the stop that is the nearest to the next boarding made 
during the day as the estimated stop. In the case of the last alighting of the 
day, deduct the location looking at the first boarding of the next day.

First route of the day

Boarding 2

Boarding 1

d

Boarding 3

Estimating

Alighting 1

Estimating

Alighting 3

Third route

Second route

Fig. 1. Basic algorithm for destination estimation (From: Li and Trépanier 2015)

The method has been gradually improved through the years. Munizaga 
and Palma (2012) showed that these results can lead to production of 
very detailed origin-destination matrices. Recently, Li and Trépanier 
(2015) proposed an improved method for unlinked trips whose alighting 
cannot be estimated by the sequence-based method. Use a kernel density 
probabilistic method to find the alighting stop, looking at the historical data 
of the smart card.

3. INFORMATION SYSTEM 

Assessment of public transport KPIs such as those presented thereafter 
necessitate the use of raw data collected in the smart card system. Data 
typically include:
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 • the identification and the date and timestamp of the transaction;

 • the card number and, when available, the user number;

 • the route and direction (if not subway) taken in the trip;

 • the operational data like the bus number, vehicle type, assignment 
number, etc.;

 • the location of the origin stop (“tap-in”) and the location of the 
destination stop (“tap-out”) or the estimated stop if not available;

 • the fare type and any socio-demographic that would be available on 
users.

  The examples given in this chapter were mainly calculated from three 
sources:

 1. Data from the smart card automated fare collection system of 
the Société de transport de l’Outaouais (STO), a mid-size public 
transport authority in Gatineau, Québec, Canada (220,000 
inhabitants, 300 buses), for a total of 65 million transactions over a 
9-year period (from 2001 to 2010).

 2. Data from the OPUS smart card system of the Commission 
interrégionale de transport des Laurentides (CITL), a suburb 
operator located to the northwestern part of Montréal, Québec, 
Canada (372,000 inhabitants).

 3. Data from the OPUS smart card system of the Société de transport 
de Montréal, a large public transport agency operating a 68 km 
subway network and more than 1,500 buses (2 million inhabitants).

4. KPI ASSESSMENT

4.1 Error Detection

Error detection is the first task done with smart card data, before 
attempting to calculate any indicator based on transactional data. As for all 
enterprise information systems, smart card systems will contain a certain 
amount of systematic and random errors. Systematic errors could be caused 
by equipment malfunction (on-board device, card reader, wrong time 
clock, etc.) or by having the wrong vehicle assignment status (programmed 
vehicle go on a route but will service another), last minute changes, etc. 
Random errors are rarer but can result from a bad data manipulation, or 
wrong database command.
 Errors could be detected through indicators based on logic according 
to the normal functioning of the public transit network. Figure 2 presents a 
space-time diagram that compares the planned service to the transactions 
log in the case of a single vehicle. The figure shows that at three places, 
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the transactions are erroneous because the vehicle is not moving for long 
periods of time, but passengers are still boarding. In this case it is caused by 
a wrong vehicle assignment. The on-board smart card reader is then unable 
to find the correct stop location so the transactions are all assigned to the 
same stop.

Fig. 2. Comparison between the attributed run of transactions and the planned service in a vehicle 
block with a time-space bubble diagram (From: Chu et al. 2009)

4.2 KPI Calculation Framework

The KPI calculation is based on the thorough examination of the smart 
card transactions made on individual vehicle runs. Figure 3 illustrates the 
conceptual framework used for the examples shown in the next section. The 
figure shows a space-time diagram of the bus passages on a single route. 
Plot the curves using sequence of smart card transactions. Represent each 
bus stop (where transactions occur) by half circles. The left half circle shows 
the number of boarding transactions, while the right one shows the number 
of alighting (exit) transactions. Calculate logically, the on-board load at a 
given stop by summing the boarding transactions and subtracting the 
alighting transactions before that stop. Please keep this figure in mind for 
the explanations in the next section.
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Fig. 3. Conceptual framework for KPI calculation

5. SOME EXAMPLES

This section presents some examples of KPI calculated from smart card 
data. The method refers to Figure 3.

5.1 Commercial Speed and Average Trip Distance and Duration

The commercial speed is the slope of the curve made by sequence of 
transactions along a route. The speed can be calculated using numerous 
smart card transaction timestamps available at different locations. The 
average trip distance and duration can also be calculated because each 
card could be followed from its boarding to its alighting. In “tap-in only” 
systems, the alighting time could be derived using the time of boarding 
located at the alighting. If there is no boarding taking place at this location, 
it uses the last known boarding time plus the estimated amount of time 
between the last known boarding location and the current alighting 
location. Table 1 presents some results from the Gatineau smart card 
system. The average speed varies on weekdays and, as expected, is higher 
on weekends. The average trip distance correlates this, which is longer on 
weekends for about the same trip duration.
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Table 1. Key facts regarding transit supply during the four weeks of November 2006  
by day of travel (From: Trépanier et al. 2009)

Weekday Average Speed (km/h) Average Trip Distance 
(km)

Average Trip Duration 
(min.)

Sunday 17.4 11.1 38.3

Monday 14.8 9.1 37.1

Tuesday 14.5 8.8 36.5

Wednesday 14.1 9.1 38.6

Thursday 13.9 9.0 38.9

Friday 13.7 9.0 39.6

Saturday 15.9 10.3 38.8

One may say that these indicators could be obtained from classical 
automated vehicle location systems (AVL). However, this is not the case. 
Calculate the average trip distances and durations looking at the individual 
behaviour is something that an AVL cannot do. The commercial speeds are 
also related to individual behaviour (when there is people aboard vehicles), 
which may slightly differ from commercial speed calculated from AVL.

5.2 Passenger-kilometres, Passenger-hours

The difference between KPI from smart card and KPI from AVL are better 
assessed when looking at passenger-kilometres and passenger-hours, 
common indicators used to measure the demand on a public transit 
network. Smart card data can be used to ventilate passengers by fare type, 
helping to measure the use of the network by types of users. Table 2 shows 
some KPI per card type for the STO network. It shows that express and 
interzone fares imply faster commercial speeds and longer trip lengths 
and durations. Smart card data allows the operator to know the amount 
of service consumed by users of different fares. In multi-operator schemes, 
this could help to share the revenues among authorities.

Table 2. Key facts on demand by card type, November 2006 (From: Trépanier et al. 2009)

Card Type #Boarding Pass-km Pass-hr Average Speed 
(km/h)

Average 
Length (km)

Average Dura-
tion (min.)

Adult-Regular 46.2% 38.9% 42.3% 17.5 7.0 24.1

Adult-Express 15.1% 21.8% 20.4% 20.4 12.0 35.3

Adult-Interzone 3.0% 11.5% 8.4% 26.2 31.8 72.9

Student 26.3% 21.0% 21.7% 18.4 6.7 21.7

Senior 3.5% 2.1% 2.3% 17.8 5.1 17.2

Other 6.0% 4.7% 5.0% 17.9 6.6 22.0

Total 100% 100% 100% 19.0 8.3 26.3
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These figures can be examined longitudinally over time, as shown at 
Figure 4. Looking at average speed, the operator may know performance 
of the network or detect possible perturbations such as weather events. 
However, the use of KPI obtained by smart card data could be risky if the 
smart card is not used by a large part of the ridership, or if there are large 
usage discrepancies between routes, parts of the network or time periods. 
Sometimes, the smart card automated fare collection systems also collect 
cash payment and tickets. This is the case for the Montreal OPUS system, 
where it is possible to gather data from both transactions from smart cards 
and tickets/cash payments on board.
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Fig. 4. Key figures for demand, per day, November 2006

5.3 Load Profile

Referring to Figure 3, the load aboard vehicles can be calculated by 
looking at the successive boarding and alighting of passengers. Because 
each transaction can be retrieved by fare type and other attributes, the 
load profile can be ventilated accordingly, supposing that the smart card 
is widely used by passengers. Figure 5 presents an example of load profile 
displayed interactively in the case of the STO network. The figure shows 
the stop-by-stop profile for a single bus run of a given day. With smart card 
systems, this profile can be generated for every single bus run, or can be 
aggregated or averaged with history, as needed by the operator. In this 
example, it can also query every stop to know boarding distribution and 
alighting passengers by fare type. There is also the possibility to filter the 
profile according to fare type. Following this logic, origin-destination 
matrices can be calculated for each route, for subsets of routes, or for the 
entire network.
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Load profiles are trickier to calculate for subway networks, because 1) 
transactions do not show the direction, or the vehicle taken at the boarding 
location and 2) passengers may have many path choices to reach their 
destination (alighting transaction). Si et al. (2014) proposed a destination-
estimation method based on travel time, travel distance and the number 
of transfers for the Beijing subway network. They categorize users based 
on their occupation, salary and purpose of travel and their destination-
estimation accuracy is above 85%. Sun and Schonfeld (2014) tried to find the 
exact time of boarding and alighting by looking at three factors: 1) the time 
between the transaction and boarding, 2) missing vehicle possibility and 
3) the schedule for the subway and the theoretical transfer time at stations. 
The subway path choice question has also been thoroughly examined by 
Raveau et al. (2011) (also see Chapter 4 of this book).

5.4 Service Variability

As for AVL systems, smart card transactions show the service variability 
that can occur due to the traffic congestion or the passenger load aboard. 
Figure 6 shows the space-time diagram of a single route of the STO network 
during one day of January 2007. It shows the higher density of service at 
peak hours, but also bus bunching occurring towards the end of the route. 
The on-board load is also displayed on the chart.
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5.5 Service Fit

The load profile and the passenger-kilometres indicators can be joined to 
illustrate the quality of the service fit. Figure 7 presents the daily statistics 
for a single route of the STO network during the month of January 2007. 
The figure shows large variations in the number of passenger-kilometres 
throughout days, especially from a Monday to another, showing the 
gradual reprisal of the service after the Christmas and New Year Day 
Holidays. These variations might be put in perspectives and compared to 
the schedules that are usually stable during weekdays.
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Fig. 7. Daily statistics for route 37, January 2007 (From: Trépanier et al. 2009)

Smart card data can be used to indirectly calculate the number of buses in 
service during the day, because the bus identification number is typically 
available in transaction data. This allows comparing the ridership to the 
number of vehicles as in Figure 8, helping to adjust the shoulders of the 
peak hours.

5.6 Schedule Adherence

Another interesting indicator that can be derived from smart card 
transaction data is schedule adherence. The respect of the schedule can 
be examined thoroughly, stop by stop, by comparing the transaction 
timestamps to the scheduled time of vehicle passages at stops. Schedule 
adherence can also be calculated without any prior knowledge of the 
schedule, or the network geometry. Figure 9 shows distribution of the 
differences between smart card timestamps and the “deducted” schedule of 
a single route of the STO network. In this case, the schedule is defined by 
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the average of transaction timestamps by bus run and bus stop. The figure 
shows that the majority of timestamps are 0 to 2 minutes after the schedule, 
which is acceptable for a transit network, while passage ahead of the 
schedule or too late, might be avoided. Like other KPI, this type of analysis 
could be done for different fare types, customer groups, or other attributes 
available.

0%

2%

4%

6%

8%

10%

12%

14%

16%

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

% of observations

Nov. 2005

Nov. 2006

<— Ahead

Minutes

Late —>
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Fig. 8. Boarding by fare type and the estimated number of vehicles in service on a weekday  
(From: Chu et al. 2009)
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5.7 Fare Evasion

Pourmonet et al. (2015) proposed a fare evasion detection method for 
the public transport network of the Société de transport de Montréal. In 
Montréal, because the OPUS smart card system collects all transactions 
(cards, tickets, cash), it is possible to compare the “universe” of boarding 
transactions to the passenger counting done by the automated passenger 
counting system (APC), given that 1) there might be counting errors in both 
systems and 2) discrepancies between the systems might not be related 
to fare evasion, but could be a good indicator of it. The data processing 
method calculates a ratio between the smart card (SC) system count and 
the APC count. Figure 10 presents this SC-to-APC ratio for the hours of 
the day in April and October 2014 data (more than 10 million smart card 
transactions for both months). When the ratio is above 1, it means that 
the number of passengers from the smart card system is higher than the 
estimate taken using APC data (not likely to happen or might be due to the 
margin of error of APC. The figure shows that the ratio decreases during 
the day, showing a possible increase in fare evasion from morning to 
evening. However, the October figures seem a little better during midday. 
Of course, this indicator could be analysed for each route or stop and 
could enhance fare inspection by showing the locations and time where the 
phenomenon is more frequent.
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6. CONCLUSION

This chapter has presented a series of key performance indicators of 
public transport networks that could be calculated from smart card data: 
load profile, commercial speed, passenger-kilometre and passenger-hour, 
schedule adherence, fare evasion, service fit, etc. As shown, smart card data 
could be used to calculate the classical KPIs obtained from AVL and APC 
systems. But smart cards will also provide attributes like fare type, bringing 
new dimensions to the analysis of these KPIs. 
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6.1 Limitations and Challenges

Two limitations arise from these studies. First, all passengers in 
public transit networks do not use smart card. This may affect the 
representativeness of the KPIs calculated; still some indicators might be 
completed with APC data, if available. The second limitation is calculation 
related of these KPIs on a continuous basis. The information system of the 
transit authorities might be sufficiently mature to support the undergoing 
tasks of smart card data processing for errors, destination estimation and 
KPI calculation. The display, the processing and interpretation of this 
continuous KPI availability need enhancement and integrated into the 
public transit authority processes.

6.2 Perspectives

In the near future, the smart card integration, real-time APC, network 
geometry and schedule data will permit to better model passenger 
behaviour and the impacts of service changes on ridership. This “micro 
elasticity” of passenger behaviour will need a detailed examination 
of individual habits, plus a thorough analysis of the service quality at 
specific time and location, all put into context in the integrated urban 
mobility system. It will then be possible to predict the impacts of changes 
or perturbations over networks, helping to adjust the service to customer 
needs.
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A B S T R A C T
 This chapter deals with the Dutch smart card system, the so-called
 OV-Chipkaart and illustrates a potential application of its data. This
 chapter explores options for using this anonymous smart card data
 for evaluation, analysis and performing simple what-if analyses by
 using transport planning software. The objective is to process the data
 in such a way that it enhances evaluation and prediction of ridership
 (patterns). This helps to improve network and time-table design. The
 main contribution of this research is to introduce smart card as a data
 source into existing methods to come to a new ridership prediction
 approach. Our approach takes comfort into account, since it is a relevant
 quality indicator, which is often neglected. We show that the effect of
 a frequency increase in a congested public transport line in terms of
 additional passengers becomes significantly larger when comfort effects
 are included. Our approach was applied as a case study to the tram
 network in The Hague. The approach proved very valuable to gain
insights on the effect of changes in the public transport supply.

1. INTRODUCTION 

Both the amount and number of sources of data is rapidly increasing in our 
society and thus also in the public transport industry. Almost all buses, 
trams and metros in the world are equipped with on-board computers and 
transmit terabytes of data with regard to for instance trip times, delays 
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and dwell times. Imagine social media data, such as user data of Twitter, 
Facebook and Flickr, which may yield new insights on public transport 
usage (Bregman 2012). Furthermore, video cameras (e.g. surveillance 
systems in stations and on-board vehicles), Wi-Fi and Bluetooth trackers 
provide information of pedestrian flows in stations, at platforms and 
in-vehicles (Van den Heuvel et al. 2015). Sensors connected to different 
types of assets, signals and switches for instances, enable optimization of 
maintenance schemes.
 This chapter focuses on a potential application of smart card data. 
Recently, many cities and regions introduced a smart card system for their 
public transport systems as discussed in this book and various publications 
such as Pelletier et al. (2011), Ma et al. (2013), Kurauchi et al. (2014), Wang 
et al. (2011) and Park et al. (2008). In addition to ticket handling, being an 
alternative for individual regional or urban tickets, these systems also 
provide valuable data. Without these systems, detailed information of 
origin and destination, number of passengers, trip lengths, etc. can only 
be collected by time consuming and expensive surveys. That is why the 
current surveys provide limited data sets. Smart card systems have the 
potential of providing more and better insights of passenger behaviour. 
These insights are helpful when dealing with the main challenges in the 
public transport industry.
 Within the public transport industry, we see several challenges. Due 
to the increased focus on cost savings, more attention to measures that 
increase cost efficiency of public transport is being paid. Meanwhile, 
passengers require higher quality of services. Although both developments 
seem to contradict each other, measures that serve both objectives do exist. 
Improving operational speed and service reliability, for instance, will lead 
to higher quality and lower costs at the same time, as shown by Van Oort  
et al. (2015b). However, to find and optimize cost-effective measures, 
detailed data on performance and ridership. Fortunately, the amount of 
data is increasing rapidly. Automated Vehicle Location (AVL) data has 
already been available for a long time (Furth et al. 2006, Hickman 2004) and 
recently much more passenger data (Automated Passenger Counting (APC) 
data) has become available as well (Pelletier et al. 2011). These data support 
public transport design and decision making, since they enable planners 
to illustrate the costs and benefits of certain problems and their solutions, 
for instance the added value of holding (Cats et al. 2012 and Van Oort et 
al. 2012) or optimized synchronization between tram and train (Lee et al. 
2014). These costs and benefits are relevant for decision making and may be 
incorporated in cost-benefit analyses.
 This chapter deals with the Dutch smart card system, the so-called OV-
Chipkaart and illustrates a potential application of its data. Our objective is 
to process the data in such a way that it enhances evaluation and prediction 
of ridership (patterns). This helps to improve network and timetable 
design. The main contribution of this research is to introduce smart 
card as a data source into existing methods to come to a new ridership 
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prediction approach. The outline of this chapter is as follows. Section 2 
will elaborate on smart card systems in general and the Dutch smart card 
data specifically. Section 3 introduces our methodology to predict ridership. 
Section 4 is a case study, which reviews the applicability of our approach 
to data to predict future ridership. The conclusion and reflection on the 
approach are provided in Section 5. The methodology and case studies in 
this chapter are partly based on Van Oort et al. (2015a).

2. SMART CARDS AND DATA

2.1 Smart Card Data Applications

For analysing, designing and optimization of public transport, actual 
and future demand is essential. The number of passengers and passenger 
kilometers in the network, per line and per stop are crucial. In addition to 
traditional counting, smart cards can be a a rich data source for this (see 
also Chapter 10). In recent years, smart card data that can distinguish 
between service, time of day and user groups has become available. The 
major advantages of smart card data for transport service providers are 
according to Bagchi and White (2005):
 – large volumes of detailed, personal travel data;
 – being able to link those data to the individual card and/or traveller, 

enabling to identify travel patterns over longer time periods;
 – having access to continuous trip data covering longer periods of time, 

to identify trends (for example due to season of the year) or to see the 
influence of incidents or engineering works;

 – knowing who the most frequent customers are.
Insights that can be gained depend on the exact characteristics of the 
system. The number of cities or regions where smart cards are applied 
is increasing rapidly (see Chapter 1). Prominent examples are London 
(Oyster card) and Hong Kong (Octopus card), but many more examples 
can be found in literature, (e.g. Seoul (Park et al. 2008), Beijing (Ma et al. 
2013), Santiago de Chili (Munizaga and Palma 2012), Shenzen (Hasan et al. 
2013) and Brisbane (Neema et al. 2015). Depending on the technology used, 
limitations in applications arise. For example, on London buses passengers 
need to only tap in and the destination stop needs to be estimated (Wang 
et al. 2011). In Ma et al. (2013), an example of Beijing is presented where no 
location information is connected to the smart card data and several data 
sources are connected to obtain the information. Another example from 
Quebec, Canada is Morency et al. 2007, where a method to estimate the 
alighting locations is given, since the smart card data does not provide this. 
Bagchi and White (2005) state that travel purpose is hard to obtain from the 
data, but in some cases this may be estimated based on the used fare type 
(for example a student’s reduction fare) or other methodologies discussed 
in this book.
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 Canadian researchers (Pelletier et al. 2011) present a broad overview 
of applications of smart card data, varying from strategic and tactical 
planning optimization to operational improvements. Most applications 
aim to assess OD-patterns (Munizaga and Palma 2012 and Trepanier et al. 
2007), route choice behaviour (Schmöcker et al. 2013) and transfer analysis 
(Seaborn et al. 2009). Surprisingly, improved forecasting based on historical 
data is only mentioned once.

2.2 The Dutch Smart Card System: OV-Chipkaart

In recent years the Dutch smart card, the OV-Chipkaart, has been 
introduced (Cheung 2006). This system replaced the former payment 
systems for regional public transport called Strippenkaart and paper 
train tickets. Strippenkaart was introduced in 1980 as one nation-wide 
payment system to replace all individual urban and regional systems. 
It could be used in the entire country. The fare depended on the number 
of zones through which one travelled. The size of these zones differed 
per region and so did the total price. The advantage of this system was 
that everybody could travel with one ticket in buses, trams and the metro 
throughout the country. However, for the national train services, a separate 
ticketing system existed. For the regional public transport operators the 
major disadvantage was that no information was available on where people 
travelled. The location of where the tickets were sold (shops and counters) 
was known, but not where they were actually used. Expensive surveys 
were required to determine how the total revenues should be split over the 
operators. To solve this, the public transport operators started to develop 
a smart card system in 2001. The system was introduced in Rotterdam in 
2005 and in the rest of the country by 2012. In 2014 the last paper train 
tickets in the national train system were abolished.
 The Dutch smart card is a nationwide system for all public transport in 
The Netherlands (bus, tram, metro and train). The card is used to pay the 
fare and on many lines (including the train) it is the only valid ticket. The 
system uses nfc-chip technology and passengers have to check in and to 
check out. Therefore, valuable information is measured about both origins 
and destinations of all public transport users (on station/stop level). In The 
Netherlands, the check in and check out devices are either located on the 
platform (for trains and metros) or inside the vehicle (for buses and trams). 
The most detailed information is available in the latter case, where each 
trip in a journey is tracked (a journey may consist of multiple trips, with 
a transfer in between). The route through the public transport network is 
therefore completely traceable. In case the smart card devices are located on 
the platforms, only information is available of the first and the last station, 
making route search through the public transport network necessary 
for analysts. In the rest of this chapter we describe the situation where 
information on the check in stop and the check out stop is available. This 
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is the case in a majority of the regional and urban public transport lines in 
The Netherlands (all bus and tram lines). 
 In 2014, 10 million smart cards were in active use in The Netherlands. 
Every week about 2.8 million people travel using their smart card to travel 
in The Netherlands, producing about 42 million transactions per week. 
These transactions are mainly check in and check out transactions, but also 
include topping up the balance on the smart cards.

2.3 Dutch Smart Card Data

An example of the raw data format resulting from the Dutch smart card 
transactions is given in Table 1. Every record contains a trip, with a check in 
station, check in time, check out station and check out time. The anonymous 
smart card ID supports the combination of multiple trips into one passenger 
journey, by identifying transfers that are made. Furthermore, a public 
transport line number is given, so that the trip may be matched to a specific 
service in case multiple public transport lines run parallel. Potentially, the 
vehicle number and/or run number are also given. In that case, detailed 
analysis of distribution among individual services is enabled, typically to 
provide solutions for capacity problems. Furthermore, some information 
may be provided on smart card type/fare type to predict trip purpose. For 
example, an annual ticket is usually used for commuting to and from work, 
while a student card is usually used for visiting schools or universities. 
Special offer tickets are most of times used for recreational purposes. 

Table 1. A sample of fictitious smart card data: every record represents a trip in a  
public transport vehicle 

Chip ID Check In 
Stop

Check 
Out Stop

Check In 
Time

Check 
Out Time

Line 
Number

(Vehicle 
Number) (Ticket Type)

1 35 488 10:27 10:52 9 .. Regular single

2 23 86 8:01 8:09 1 .. Student

2 86 90 8:17 8:55 3 .. Student

3 73 94 7:20 7:53 4 .. Annual ticket

3 94 73 16:55 17:27 4 .. Annual ticket

For simplicity, all data in this example is for a specific date.

In Table 1, the first trip is the only trip conducted on this day by chip ID 1. 
This may be a trip for visiting family (including an overnight stay) or the 
return trip might be made by car (probably as a passenger). The second and 
third records are from the same chip ID. Furthermore, the trips are very 
close to each other in time, so we can assume these trips are a part of the 
same journey, which includes a transfer. We observe that the alighting stop 
for the first trip and boarding stop for the second trip are the same. Note 
that this is not necessary to form a transfer: there may be a short walking 
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leg may in between, for example, in a large station with various tracks 
where there are several on-street stops. Finally, the last two records are 
of the same chip ID as well, but these trips are apart from each other in 
time, so these trips cannot be one journey. We observe that this is a typical 
commuting pattern: in the morning the traveller goes to work and returns 
home in the evening. The ticket type ‘annual ticket’ is another indication of 
commuting to work.
 The technical system of the Dutch smart card system that generates the 
above mentioned data contains several components; see Figure 1,

 – Level 0: The smart card. These cards always have an ID number. Both 
personal cards and anonymous cards exist. Personal cards can be used 
to load personal products, for example to get discounts or unlimited 
travel.

 – Level 1: Devices that have direct contact with the smart cards: check 
in and check out devices and ticket vending machines. These devices 
have the power to change the balance on the smart card. They also 
provide the smart card with a check in tag, as a proof of a valid ticket 
in case of ticket inspection.

 – Level 2: Local systems at public transport operators that collect data 
of individual transactions from level 1 devices and temporarily store it 
(for example located at a bus garage). 

 – Level 3: Central system for each public transport company, where all 
the data of a company is available and prepared to send to the national 
(public transport smart card) data collecting agency (i.e. TLS). At this 
level data of check ins and check outs to trips and the data might be 
added to the trip, like distance travelled or fare paid.

 – Level 4: The database of the national data collecting agency. Here 
smart card transactions are verified and the financial consequences of 
the transactions are determined (all payment are registered). Another 
function is to provide personal transaction history to smart card users. 

Level 0

Smart card

Level 4

Central database of the national

data collecting agency

Level 1

Check in and check out devices

Ticket vending machines

Level 2

Local storage systems at PT company

Level 3

Central storage system of PT company

Fig. 1. Dataflow through the Dutch smart card system from the smart card in level 0 to the  
national database in level 4. A distinction may be made between components of the national  

agency (left) and components of the public transport companies (right)
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Technically speaking, the data is available at the individual level, giving 
large possibilities for detailed analysis. However, there are some concerns 
about the availability of the data and privacy agreements that must be 
taken into account. Privacy is the most important issue, as individual data 
is used. Therefore, Dutch privacy law states that processing individual 
data is not allowed and that data must not be preserved for more than 18 
months. It is also required that before the start of any research in which 
smart card data is used, the objective should be clearly stated. The dataset 
cannot be used for other purposes.
 Another concern is the availability for analysis. The data is owned by 
public transport operators and most of them see it as confidential company 
information, due to the tendering system of the Dutch public transport 
concessions. Data of only one public transport operator is available for 
analysis, since this could be regulated in contracts. However, combining 
data from more operators is still difficult due to this issue. This data 
could be valuable, for example as to analyse movements in a train station. 
Currently both the national and regional governments are trying to solve 
these issues with the co-operation of the operators. The first attempt of 
connecting data of operators is described in Nijenstein and Bussink (2015). 
They show how trip chains of smart card data of multiple operators [HTM 
(urban public transport operator in the The Hague region) and NS (national 
railways)], was created. 

3. PREDICTING RIDERSHIP BY SMART CARD DATA

3.1 Introduction

Making predictions for public transport can be done in several ways, 
ranging from multimodal activity based models to simple rules using 
spread sheets. In The Netherlands, a hierarchy of traffic forecast models 
exists. The national model is a disaggregated model mainly focused on 
road travel. Four more detailed regional models exist using the same 
principles as the national model, but with more detailed networks. Public 
transport is modelled during the distribution phase of the model, but the 
level of service matrices are mainly exogenous (Joksimovic and Van Grol 
2012). 
 At the urban level, many cities in The Netherlands have their own 
models. In most of these models public transport is modeled in more 
detail on the network level. However, the models are generally simpler. 
Most of them are multimodal gravity models for estimating the demand. 
Recently, the importance of the bicycle as access mode to public transport 
was recognised, resulting in more sophisticated models using a nested logit 
structure that distinguishes between different access and egress modes in 
public transport (Brands et al. 2014).
 Most of the public transport operators in The Netherlands do not 
use transport models for predicting ridership or changes in demand. For 
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shorter term changes in their services, due to maintenance mostly spread 
sheets are used with relatively simple rules. Transport models could 
provide valuable insights for public transport operators. Many regions, 
however, do not have a multimodal transport model, or the level of detail 
of these models does not match the level of operation within the public 
transport company. 
 With the introduction of the smart card system several public transport 
operators wonder what they can do with this massive data. Mainly because 
of the continuous nature of this data, systems and ideas have emerged to 
use this for gaining more insight into current use. There are numerous 
studies wherein smart card data is analysed specifically for the current 
situation in order to replace survey data. They mainly focus on aspects 
as data cleaning, estimating alighting stop, etc. For an overview of these 
studies, see Pelletier et al. (2011). There are several studies wherein origin 
destination information (OD-matrices) is derived from the data, either in 
aggregated form (Wang et al. 2011) or disaggregated form (Munizaga and 
Palma 2012 and Bouman et al. 2013). 
 Once a matrix is produced that reproduces the passengers in the 
services, it becomes possible to perform what-if analysis, by assigning 
this matrix to the public transport network. The simplest possibility is to 
assume the demand remains fixed but this would show only the effect on 
route choice. A better approach would be to assume the demand matrix 
reacts to changes in the network. This could be done using a simple 
elasticity model. When a full multi-modal model exists for the study-
area, the demand shift could be taken from the model. The most feasible 
approach depends on the availability of existing models and the time 
horizon for decision making. Table 2 gives an overview of the possibilities.

Table 2. Possible public transport models

Multimodal Model Elasticity Model Quick-Scan Model

Modes Car, public transport, bike Public transport Public transport

Scale National, regional, urban Regional, Urban Urban

Time Horizon 10-20 years < 10 years < 5 years

Project Type Strategic, policies, 
infrastructure changes

Tactical, changing lines, 
frequencies, stops

Tactical, changing lines, 
frequencies

Usage Modal split, cost-benefit 
analysis Network effect Route choice effects

In the following we derive and apply an elasticity model with the smart 
card data. These kind of models are relatively simple to construct (thus 
saving time and budget) and can make good use of the available data. The 
accuracy level is lower than multimodal models, but still enough for several 
research objectives.
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3.2 Deriving OD Demand from Smart Card Data

The derivation of OD matrices from smart card data makes it possible 
to perform what-if analysis using traditional transport modelling. The 
smart card data produced by the Dutch system does not have many of 
the problems seen in other studies due to check in and check out data 
being available. This makes the construction of trips made by individuals 
from first boarding to last alighting including transfers between services 
possible. In urban public transport in The Netherlands, smart card data 
transactions take place in each vehicle separately. This means that a 
traveller has to check in and check out in each vehicle. If a transfer is 
made, two separate transactions are registered. To estimate an OD-matrix, 
it is necessary to aggregate these trips made by one traveller to an origin-
destination level. Three aspects are especially relevant in this process, are 
highlighted in the following subsections. 

3.2.1 Threshold Time for Transfers

First, it is important to determine a valid threshold time to combine two 
trips with a transfer in between to one total trip. If a traveller spends 
a longer time period at a station than this threshold, the trip is seen as a 
new trip. Using a very short threshold time between two subsequent trips 
may wrongly interpret trips with a relatively long transfer time. This is 
especially relevant when transfering to a public transport service with a 
low-frequency, where waiting times can be long. In this situation with a 
very strict threshold – for example a threshold value of 10 minutes – some 
trips with an intermediate transfer might not be correctly aggregated 
to the OD-level. This may lead to overestimation of the number of trips 
(by considering a trip from A, via B, to C, as two separate trips A-B and 
B-C), to an underestimation of the trip length, underestimation of the 
number of transfers and to biased errors in demand on OD-pairs. On the 
other hand, when applying a very high threshold value – for example 60 
minutes – probabilities increase that two separate trips back-and-forth 
are ignored. For example, consider a traveller leaving from origin A to 
destination B, performing a short activity and then returning from origin 
B back to destination A. In this situation with a high threshold value, these 
two separate trips will be wrongly aggregated to one trip with the same 
origin and destination, namely A. Usually trips with the same origin and 
destination are excluded from analysis, this leads to underestimation 
of PT ridership. It is therefore important to find a balance between these 
issues by applying an intermediate threshold criterion to decide whether 
to aggregate two separate trips to one OD-trip. In The Netherlands, 35 
minutes is often used, because this is the threshold value used for the fare 
system. This fare system is distance based, but also includes a fixed start 
fare, which has to be repaid if a traveller boards the next vehicle more than 
35 minutes after leaving the previous vehicle. In urban areas, where the 
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frequencies are usually more than twice per hour, a somewhat lower value 
(i.e. 25 minutes) seems more appropriate, given the occurrence of the effect 
of high threshold values described above.

3.2.2 Unique Card Number

Second, one should be aware that a unique card number is required to 
determine a transfer made by a certain traveller to aggregate two trips with 
an intermediate transfer to one OD-relation. Due to privacy regulations, 
it can be difficult to get transaction data from public transport operators 
or authorities with a unique card number for each transaction, but after 
aggregation of trips to OD pairs, this card number is not needed any more 
and can be deleted. If needed, this aggregation may already be done by the 
public transport operators themselves. It is important to use a relatively 
large dataset to determine an OD-matrix. For example, using smart card 
transactions from 20 workings days as input to estimate an OD-matrix 
for an average working day increases the probability that trips are made 
between all relevant OD-pairs. This implies that non-integer numbers 
may occur in the OD matrix, to represent demand on OD-pairs with only 
occasional demand. On the network level, the demand will be as realistic as 
possible in this way. Next to this, one should be aware that some travellers 
use different smart cards for different parts of their trip. For example, 
someone might use his/her private smart card for the travelling from home 
to the train station and use a company-owned smart card for the main part 
of the journey. Because these cards have different card numbers, it is not 
possible to aggregate these trips to the OD-level. This means that this trip 
will be reflected in the OD-matrix as two separate OD-trips. 

3.2.3 Time Dependent OD Demand

Detailed information is available in the smart card data about check in 
and check out time. This enables the modeller to define any desired time 
period. In the current application, the average between first-boarding and 
last-alighting time is taken to determine in which hour of the day the trip 
took place. 
 In the next step, these hours of days are aggregated into typical 
modeling periods, like AM peak, PM peak, day time and evening time. For 
a different application, typically when capacity is relevant, more detailed 
time periods are possible, for example half hour periods. This may reveal 
that for example between 7:00 and 7:30 the number of passengers is still 
limited, while from 7:30 the system is packed with passengers. This cannot 
be revealed on the hour level, neither on the AM peak level. On the other 
hand, smaller time periods also have difficulties, because many trips are 
longer than 15 minutes. This makes the assignment of a trip to one time 
period problematic, because many trips occur in various time periods.
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 A matrix between stations should ideally be converted to a zone-
to-zone matrix. In this study this step is omitted. The resulting station-
to-station matrix should be assigned to the network in order to check 
the measured number of passengers in the services is reproduced. This 
requires calibrating the assignment model’s route choice parameters which 
might also be done with smart card data (see Chapter 4). In this study this 
was done manually.

3.3 Elasticity Model

Given an OD matrix that is provided by smart card data, a public transport 
network and a calibrated route choice and assignment model, the step 
towards short and medium time prediction can be made. Such a tool would 
allow one to assess the network effects of changing the frequency of lines, 
changing routes of lines, introducing new routes and increasing the speed 
of a line. These measures may be temporary or permanent. Next to changes 
in route choice, changes in demand could also be expected.
 In this chapter we present a method that is based on demand elasticity: 
the relative change in costs per OD pair have an effect on transportation 
demand on that OD pair. For a good overview of elastic demand models 
(see Litman 2013). 
 The costs of a public transport trip comprise of several components: 
in-vehicle time, waiting time, number of transfers (penalties) and fare. 
All these components of the trip are expressed in monetary values by 
the coefficients and summarized. The resulting value is referred to as the 
generalized cost between stop i and stop j: Cij. For the Dutch situation the 
values for a are known and taken from literature (Significance et al. 2013 
and Wardman 2004). 
 For in-vehicle time 6 Euros per hour is used in Significance et al. 2013. 
For waiting time, a factor is used that is one and a half times as high as 
the factor for in-vehicle time (i.e. 9 Euros per hour) (Wardman 2004). For 
transfers a penalty of 5 minutes is used, which means a cost of 5 times 9/60 
Euro for every transfer.
 Equation (1) shows the calculation of generalized costs for OD pair 
i,j. The coefficient of fare a4 is equal to 1, because it expresses the costs in 
monetary values. 
 Cij = a1Tij + a2WTij + a3NTij + a4Fij (1)
With:
Cij  Generalized costs on OD pair i,j
a1,a2,a3,a4 Weight coefficients in generalized costs calculation
Tij In-vehicle travel time on OD pair i,j
WTij Waiting time on OD pair i,j
NTij Number of transfers on OD pair i,j
Fij Fare to be paid by the traveller on OD pair i,j
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Figure 2 shows the steps in our elastic demand calculation. First, using a 
public transport route choice algorithm (Brands et al. 2014), the generalized 
cost matrices are calculated for the base situation and the situation 
that includes a network scenario. Note that this requires successful 
calibration of the route choice parameters: we here assume that the route 
choice algorithm is able to reproduce the line loads in the base situation. 
Comparing the cost matrices results in relative cost changes per OD pair. 
Using the OD matrix for the base situation (from smart card data) and 
an elasticity value (Wardman 2012, TRB 2004, Balcombe et al. 2004), the 
relative changes in OD flows are calculated, resulting in an OD matrix for 
the network scenario. Importantly, the availability of smart card data offers 
great opportunities to assess new elasticity values by performing revealed 
preference research. New values may be found for both structural and 
temporal changes in offered service quality (see Van Oort et al. 2016). The 
final step is to assign this OD demand to the public transport network, 
again using the public transport route choice algorithm. 

PT assignment scenario

Cost matrix base

Demand

elasticity

PT assignment scenario

PT assignment base

Cost matrix scenario

Relative changes

OD matrix base OD matrix scenario

Fig. 2. Schematic representation of the demand prediction model 

The elasticity model used in this study is captured in Equation 2. The 
new OD demand is calculated (in the situation with the network scenario) 
from the base demand using the change in cost and the elasticity value. 
The subtraction and later addition of 1 in the equation is to convert from 
a growth factor to relative growth or vice versa. Accordingly, in this 
definition the value for elasticity should be negative to be realistic, since 
an increase in costs then leads to a decrease in demand. Consequently, 
the demand change is directly calculated from generalized costs. This is 
different from using, for example, travel time elasticity or fare elasticity, 
since those values only include specific components of the generalized 
costs. The value of generalized costs elasticity is chosen in such a way that 
the effect of a travel time or fare change roughly corresponds with the 
changes that would occur when using travel time or fare elasticity. 
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With:

Di
1
j Demand on OD pair i,j in the scenario

E Elasticity

Ci
1
j Generalized costs in the scenario

Ci
0

j Generalized costs in the base situation

Di
0

j Demand on OD pair i,j in the base situation

Extensions of this model can be made when new housing or job 
developments take place in the region at study. The relative growth of 
housing or jobs around public transport stops may be converted into 
growth factors to be applied to rows or columns of the OD matrix. Then 
the assumption is made that the distribution of trips among destinations 
or origins does not change from the observed distribution (based on smart 
card data) in the base situation. When both rows and columns are adjusted, 
a balancing method should be applied, for example the Furness method. 

3.4 Incorporating Comfort Impacts

3.4.1 Effects of Comfort and Crowding

In urban public transport systems, there are increasingly problems 
regarding the supplied comfort and capacity to passengers. Comfort is 
however hardly incorporated in current public transport demand models, 
although comfort and crowding levels influence passengers’ route and 
mode choice. Besides, there is no unlimited capacity available on public 
transport lines. For a realistic modelling of passenger demand and route 
choice in crowded public transport systems, it is important that the number 
of passengers assigned to a public transport service does not exceed the 
capacity of this service. Therefore, as an extension of the elasticity demand 
model described in the previous section, comfort effects are incorporated 
in the predictions. Smart card data also proved to be very supportive 
in this process. Such a model extension is useful when a heavily used 
public transport network is studied. This can be in a temporary context, 
for example when due to engineering works a public transport line is 
not available anymore, and the public transport operator wants to check 
whether the capacity of public transport lines on alternative routes is 
reached, in order to anticipate on this accordingly. Also in a permanent 
situation this may be relevant: when the frequency on a crowded high 
frequency line is increased, the current models only predict a limited 
passenger growth due to slightly reduced waiting times. However, in 
reality passengers may decide to start using the service due to an increased 
comfort level as well. 
 In literature several approaches exist to assign traffic to a public 
transport network, incorporating capacity. Cepeda et al. (2006) put a hard 
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capacity constraint to public transport links, while Florian (2002) uses a 
crowding function where link costs depend on the flow. Pel et al. (2014) go 
one step further by introducing a crowding function both upon boarding 
(using an additive trip penalty) and in public transport line sections 
(using a time multiplier). Schmöcker et al. (2011) use a similar approach 
by introducing the ‘‘fail-to-sit” probability. This requires a Markov type 
network definition with two states: sit and stand, using priority rules when 
passengers change state. Pel et al. (2014), Schmöcker et al. (2011) and Cepeda 
et al. (2006) apply their methods to real world case studies, but only as an 
assignment method in itself (not as a part of a larger modelling framework).
 In general, crowding in public transportation can have three different 
effects:

 • The in-vehicle time perception of travellers increases with a more 
crowded vehicle, since a crowded vehicle is perceived as less attractive 
than a quiet vehicle.

 • Passenger demand for a certain PT service exceeds the supplied 
capacity. On the short run this denied boarding leads to passengers 
having to wait another interval time for the next vehicle. On the longer 
run, for permanent and published maintenance works, an equilibrium 
situation will rise where passengers adjust route and mode choice such 
that supplied capacity is not exceeded. For unplanned disturbances, no 
equilibrium situation is expected.

 • Dwell time of public transport vehicles increases with higher crowding 
levels, since the boarding and alighting process will take more time.

In this study, we focus on incorporating the first two comfort effects in PT 
demand models.

3.4.2 Methodology of Incorporating Comfort

The two mentioned comfort effects are incorporated in our model by 
making the in-vehicle travel time component of the generalized costs 
function dependent on the passenger load. For this, a crowding function is 
used. The perceived in-vehicle travel time is calculated as a multiplication 
factor over the real, objective travel time, which depends on the passenger 
load in relation to the number of seats and to the capacity for standing 
passengers. First, the transformed volume/capacity (VC) ratio is determined 
using Equation 3. The result of this formula is that VC = 1 when the 
passenger load L equals the seat capacity Cseated of a certain vehicle.  
VC = 2 when the load L is equal to the crush capacity (seated plus standing 
passengers) Ccrush. The seat capacity and crush capacity can be specified 
for each public transport line and each modelling period (morning peak, 
evening peak, off-peak hours) separately, in order to distinguish between 
different vehicle types and lengths used on different lines during different 
times of the day.
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Most studies on valuation of crowding only use the load factor – the 
passenger load L divided by the seat capacity Cseated – to express crowding 
effects (Wardman and Whelan 2011). In our study, we explicitly distinguish 
between the seat capacity Cseated and the crush capacity Ccrush of public 
transport vehicles. Taking both the seat capacity and crush capacity into 
account has the advantage that different types of vehicles with different 
configurations (with relatively less or more seats with respect to the total 
capacity) become comparable. In a public transport vehicle with a relatively 
high number of seats relative to the total crush capacity (e.g. an intercity train 
service), crowding will be perceived differently compared to a vehicle with a 
relatively low number of seats in relation to the crush capacity (e.g. a light rail 
or metro service). This means that in reality the load factor only makes sense, 
when it is related to the total crush capacity of a vehicle.
 In their meta study to crowding valuation in public transport, 
Wardman and Whelan (2011) indicate that the in-vehicle time multiplier 
should be expressed as function of the load factor, up to a load factor 
of 100% of the seat capacity Cseated. For highload factors, the vehicle 
configuration needs to be considered as well. For load factors between 
Cseated and Ccrush we determine the in-vehicle time multiplier as function of 
both the seated and crush capacity. 
 Based on the VC ratio, a piecewise linear function is used to determine 
the factor for perceived travel time F, based on the values in Table 1. 
Starting from 80% seat occupation the comfort level starts to decline 
following Douglas Economics (2006). According to Douglas Economics, the 
multiplication factor equals 1.1 when a 100% seat occupation rate is reached. 
Revealed occupation rates using smartcard data are used to determine 
the crush capacity of different types of public transport vehicles. The 
crush capacity as specified by the manufacturer, assuming 4.5 persons/
m2, appears not to be realized in practice in the Netherlands. Based on 
vehicle configuration and the maximum number of passengers per vehicle 
found in actual smartcard data of tram lines in The Hague, we determined 
that the crush capacity Ccrush in the vehicles in our study is reached with 
3.5 persons/m2. Using the crowding multipliers from MVA Consultancy 
2008 – where seated and standing multipliers are expressed as function 
of the number of standing passengers per m2 – we determined that the 
multiplication factor increases with 0.64 from Cseated to Ccrush. Wardman and 
Whelan (2011) conclude that the in-vehicle time perception increases linear 
with increasing crowding levels. Non-linearity’s could not be justified 
empirically. This leads to a piecewise linear function with crowding 
multipliers as shown in Table 3. 
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Table 3. Relation between VC and the perceived travel time factor. A factor of 1 implies no  
additional perceived travel time

Perceived Travel Time Factor FVC

10 – 0.8

1 – 1.10.8 – 1.0

1.1 – 1.741.0 – 2.0

1.74 – 102.0 – 3.0

Using Equation 4 this factor is applied over the real link travel times to 
calculate the perceived travel time, which replaces real travel time in the 
generalized costs function (Equation 1).

 Ti
per
j = Tij * F (4)

To prevent the assignment of passengers to a vehicle where Ccrush has 
already been reached, the VC function increases steeply for VC values > 2.0. 
In this way, the attractiveness of a route with a completely crowded vehicle 
decreases in such way, that passengers will change their route or mode 
choice. This leads to the crowding function as visualized in Figure 3.

Fig. 3. Crowding function

Note that the load is needed for a 1 hour time period, because the capacity 
is also given per hour (resulting from the frequency and seat/crush capacity 
per vehicle). If the modelled time period is longer, a correction factor 
is used. Depending on the evenness of the load distribution over this 
time period, this factor is equal to the period length in hours (in case of 
a perfectly uniform distribution), or is smaller than the period length. If 
the distribution is uneven; the busiest hour is taken as representative for 
the entire time period, by dividing the real number of hours by the busiest 
hour factor.
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 Since the costs of travelling now depend on the load, an iterative 
assignment is necessary. This assignment procedure is comparable 
to a user equilibrium assignment which is common in road network 
assignment when incorporating congestion effects. The iterative procedure 
is repeated until convergence is reached between iterations N and N + 1. We 
specified a convergence criterion of 5%. 

4. CASE STUDY: THE TRAM NETWORK OF THE HAGUE 

4.1 Introduction

We applied our approach of connecting anonymous smart card data 
to a transport model and performing predictions (with and without 
incorporation of comfort effects) in a case study. In this case study, we 
tested whether our approach presented in the previous section would 
work with actual data and real life networks. We connected anonymous 
smart card data of HTM, the tram operator in The Hague (about 500,000 
inhabitants, 3rd largest city of the Netherlands) to a transport model 
built in OmniTRANS (http://www.dat.nl/en/products/omnitrans/). The city 
of The Hague has 12 tram/light rail lines with a total length of about 
335km. Yearly, about 70 million passenger use these lines. In addition to 
these tram lines, the public transport in and around the city consists of 
urban and regional bus lines and railway lines. In this case, we have only 
investigated the tram lines. This made the calibration of the route choice 
model relatively simple because in most cases only one route choice option 
existed. In future research we will add the bus and train services to the 
model. This will give us more possibilities to calibrate the route choice 
model. The calculation time required for the prediction of new demand for 
one time period (i.e. a morning peak) including a complete iterative elastic 
assignment is around 25 minutes on a regular core i5 laptop.

4.2 Evaluation

A first step in supporting public transport planners and designers is 
visualizing historical (smartcard) data. In, for instance Van Oort and Van 
Nes (2009) and Van Oort et al. (2015c), examples of AVL data visualization 
are provided. In addition, illustrating smart card data on a geographical 
layer is beneficial as well.
 To combine anonymous smart card data with geographical 
information, we imported the public transport network into the software 
environment OmniTRANS using timetable data which is publicly available 
in GTFS (General Transit Feed System) format. This format was introduced 
by Google to allow public transport operators to feed their timetables 
to Google Maps. This data contains the lines, positions of stops and the 
departure and arrival times of each run at each stop. It is translated into 
frequencies and travel times per line per time period (AM peak, PM peak, 
off-peak day period and evening). The information of the lines (including 

http://www.dat.nl/en/products/omnitrans/
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the locations of stops) is mapped geographically on the underlying 
infrastructure, in this case the tram rail network of The Hague. The 
resulting network can be seen in Figure 4. 

Fig. 4. All lines in the tram network of The Hague 

In this case a decision was made to put the zones directly at the stops. The 
combination of geographical data of stops and lines and the smart card 
data (average working day of one month) is used to visualize passenger 
flows on the network. To this end, the smart card data (in the format of 
Table 1) is first pre-processed: invalid records are removed (for example 
records with the same stop for check in and for check out), being less 
than 5% of the total data amount, and trips are combined to journeys by 
identifying transfers, based on smart card ID and check out/check in time. 
After that, the journeys are loaded onto the network, following the check in 
and check out stop and public transport line number in the data. When the 
network data (from GTFS) and smart card data (from the public transport 
company) of the same date are used, these two data sources fit very well: 
almost all records from the smart card data can be directly imported. 
 The resulting geographical visualization can be shown over time, 
since the check in and check out times are known. Given the assumption 
that the time stamp determines the time block of the trip (check in time, 
check out time or an average between the two), the data can be visualized 
per aggregated time period, for example per one-hour period. Figure 5 
shows the link loads in the AM peak for a one-day sample: it can clearly be 
observed that before and after the peak period, the flows are much lower 
than during the peak period (see the presented loads in the added circle 
for instance). This time-dependent data may as well be visualized in an 
animation. The visualization helps to understand the past: identifying high 
or low flows, identifying important (transfer) stops and understanding the 
difference among time periods over the day. 
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4.3 Predicting

4.3.1 General Case

In addition to showing historical data, by connecting network and smart 
card data in the transport model, we also tested our elasticity method on 
the actual data simulating several measures. We investigated frequency 
changes, fare adjustments and rerouting of a line. The elasticities we used 
were based on literature (Balcombe et al. 2004) and also on rules of thumb 
of HTM. For instance, we used an elasticity value of -0,5 for travel time 
changes (E in Equation 2). This means that an increase of 10% in travel time 
will lead to 5% less travellers. The rules of thumb of HTM were audited 
and proven to be valid by independent research (Oostra 2004).
 We adjusted the original skim matrix to the measures and calculated 
the new passenger OD-matrix accordingly. We assigned this matrix, using 
the Zenith-algorithm (Brands et al. 2014). Similar visualizations as shown 
in Figure 5 may be generated showing the new link loads. Figures 6 and 7 
show the outcomes (in terms of change in passenger load) of two examples 
of specific network scenarios: a frequency increase and a route change 
in a public transport line. The main contribution of this method is that 
we clearly see the network impacts. Figure 6 shows a frequency increase 
on two lines, with expected ridership growth on these two lines (green), 
but also a decrease in a nearby line (red). With Figure 7 we illustrate 
the impacts of a route change (a link was blocked and trams had to be 
diverted). Due to higher travel costs on the new route, the total number of 
passenger decreased (increase on the diverted line route (green) is smaller 
than decrease on the original route (red)). 

Fig. 6. The effect of a frequency increase on ridership 
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Figure 7. The effect of a change in route on ridership

We did a validity check on the results, which were in line with the existing 
methods (traditional models). However, the next step would be detailed 
research on revealed behaviour after changes to find updated elasticity 
values, specifically focusing on this area and the types of passengers.

4.3.2 Results after Incorporating Comfort

To see whether our approach of incorporating comfort in the prediction 
process is applicable and valid, we also applied this method in a case study 
in The Hague. The case consists of increasing the frequency of tram line 
15 (line length: 9.4 km) from 6 to 8 trams per hour during the morning and 
evening peak. Since this tram line has a high peak demand, the effect of 
an increase in frequency on public transport demand is investigated for the 
situation with and without incorporating comfort effects of this measure.
 Table 4 shows the predicted relative effect of the frequency increase 
on public transport demand for tram line 15 without and with considering 
comfort effects. Table 5 shows the expected absolute increase in public 
transport demand as consequence of this measure on the public transport 
network as a whole, considering substitution effects between lines as well. 
From this table we can conclude that 165 new passengers are expected in 
both the morning peak and evening peak, when only benefits from a 
reduced average waiting time are considered. When both the effects of 
reduced waiting time and improved comfort are incorporated, 240 and 200 
new passengers are expected in the morning and evening peak respectively. 
Since in the morning peak public transport demand is more clustered 
within a small period, comfort benefits of this measure are larger during 
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the morning peak, compared to the evening peak where demand is more 
uniformly distributed. We can conclude that the traditional approach, which 
do not consider comfort benefits, tend to underestimate the additional 
public transport demand because of this measure with 30% in the morning 
peak, and with 20% in the evening peak. This means that a substantial part 
of the benefits of this measure can be attributed to improved comfort levels, 
which would not be detected otherwise. Figure 8 visualizes the modelled 
relative effect of this measure with and without considering comfort effects. 
It shows that the higher frequency of tram line 15 attracts some passengers 
from the parallel tram line 1 (shown in red in Figure 8). 

Table 4. Estimate relative increase in public transport demand tram line 15 after frequency increase 
in morning and evening peak (without and including comfort effects)

Model without Comfort Model including Comfort

Average Work Day +8% +10%

Table 5. Estimate increase in public transport demand on a network level after increase of frequency 
in morning and evening peak (without and including comfort effects)

Model without Comfort Model including Comfort

Morning Peak + 165 + 240

Evening Peak +165 + 200

Fig. 8. Relative network effects of frequency increase on link loads a) without considering comfort 
(left) and b) considering comfort effects (right) during morning peak

4.4 Reflection

In this research we have chosen an initially practical approach by choosing 
a zonal system corresponding to the actual stops. A more desirable option 
is to choose a zonal system as used in the model system for this region 
(resulting in OD-matrices from zone-zone instead of stop-stop). This would 
allow direct usage of modal split factors from this model while having a 
more accurate matrix for the current situation. 
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 Because our case was limited to tram lines only, route choice in this 
network did not play a significant role. This meant that calibrating the 
route choice model using smart card data was not very challenging as 
mostly just one route was feasible. In an anticipated extension of this study 
we intend to increase the network with all the bus lines of The Hague, 
resulting in a network with significant route choice options. A public 
transport route choice algorithm needs parameters, for example logit 
parameters in stop choice and line choice models, or the weight factors for 
cost components in the generalized costs function (as are also defined in 
this chapter). The detailed smart card data presented in this chapter could 
be used to calibrate these parameters, since the actual routes chosen by 
travellers are observed (i.e. line choice and transfer stop choice). If multiple 
routes are available, a distribution among the routes can be derived 
from the data that should be estimated by the route choice model and its 
parameter settings. Furthermore, it can be tested whether these parameters 
are approximately equal for different situations (i.e. short trips vs. long 
trips). 

5. CONCLUSIONS

Public transport operators are exposed to massive data collection from 
their smart card systems. In recent years The Dutch smart card, the OV-
Chipkaart, has been introduced. This smart card system covers all public 
transport in the Netherlands (bus, tram, metro and train). The system 
was introduced in Rotterdam in 2005 and in 2012 the full country was 
equipped. In 2014 the last paper train tickets in the national train system 
were abolished. Every passenger needs to check in and check out, resulting 
in detailed information on the demand pattern. In buses and trams, check 
in and check out take place in the vehicle, providing also information on 
route choice. 
 This chapter explored options for using this smart card data for 
evaluation, analysis and performing simple what-if analyses by using 
transport planning software. The intention was to design relatively simple 
(easy to build) models to perform these what-if analyses.
 Smart card data was mapped to the public transport network, resulting 
in passengers per line and number of boarding, alighting and transferring 
passengers per stop. Visualizing this data for each hour of day proved to 
be valuable when analysing the network (i.e. peak directions, distribution 
of demand over time and space). When analysing capacity in peak periods, 
distinguishing between half hour periods proved to be useful. 
 To construct OD demand matrices between stops, trips with one or 
more transfers in between are aggregated. A time threshold of 25–35 
minutes appeared to be a good value to identify most transfers, while most 
short stay back-and-forth trips are still identified as separate trips. The 
OD demand matrix is assigned to the network to reproduce the measured 
passenger flows. Once the assignment can reproduce the passenger flows 
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simple what-if analysis becomes possible. With fixed demand, line changes 
can be investigated. With the introduction of an elasticity method on the 
demand matrix, modal-split calculations are possible.
 In our approach, we explicitly take comfort into account, since it is a 
relevant quality indicator, which is often neglected. We showed that the 
effect of a frequency increase in a congested public transport line in terms 
of additional passengers becomes significantly larger when comfort effects 
are included. We expect this effect to be closer to reality, because for choice 
travellers, crowding can be an important reason to choose an alternative 
mode. From a policy perspective this also indicates that benefits of such 
measures can be underestimated when comfort is not incorporated in 
the demand modelling framework. We also illustrated the potential of 
these models to be applied in practice, given the limited calculation times 
required.
 The method described above was applied in a case study, being the 
tram network in The Hague. The tool turned out to be very valuable for 
the operator to gain insights into small changes. However, the approach 
has some limitations and shortcomings. First of all, the elasticity method 
is only valid for short term predictions and only unimodal (public 
transport) results are provided. We recommend further research on region 
specific elasticities. With the availability of smart cards, valuable revealed 
preference research is possible after changes in level of service. Another 
anticipated improvement is related to the zonal system. In this case the 
zones are at the stops making what-if analysis on stop choice rather limited. 
In an anticipated extension the smart card data station-to-station matrix 
will be converted to a proper zone matrix. 
 In addition to the presented application, several other application 
opportunities arise as well. We expect that smart card data will enable an 
increase in revealed preference research, thereby updating or adding new 
insights into elasticity values and modelling parameters. Useful insight 
may be gained from type of day, type of passenger and type of service area 
etc. We also see opportunities for data fusions applications. Combination 
of smart card and AVL data for instance, will provide more and better 
understanding of passenger reliability. The fusion of GSM and smart card 
data is promising – modal share per area and/or moment may be assessed 
quickly.
 However we also face some challenges. There are concerns about 
availability of the data and privacy agreements that must be taken into 
account. Privacy is the most important issue, because individual data 
is used. Dutch privacy law states that processing individual data is not 
permitted and that data must not be preserved for more than 18 months. 
It also requires that before the start of research in which smart card data is 
used, the objective should be clearly stated. The dataset is not allowed to be 
used for other purposes.
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 Another concern is the availability for analysis. The data is owned by 
public transport operators and most of them see it as confidential company 
information. Combining data from several operators is a challenging 
topic. However an attempt of doing so is being made in The Netherlands 
in Nijenstein and Bussink (2015). This paper demonstrates how they 
created passenger journeys (consisting of multiple trips, thus including 
transferring) by combining smart card data of multiple operators. 

ACKNOWLEDGEMENTS

The authors are thankful for the data and tooling provided by HTM The 
Hague and Goudappel Coffeng.

REFERENCES 

Bagchi, M. and White, P. 2005. The Potential of Public Transport Smart Card Data. Transport 
Policy, Vol. 12, No. 5, pp. 464-474.

Balcombe, R., Mackett, R., Paulley, N., Preston, J., Shires, J., Titheridge, H., Wardman, M. and 
White, P. 2004. The demand for public transport: a practical guide.

Bouman, P., van der Hurk, E.L., Kroon, T., Li, and Vervest, P. 2013. Detecting activity patterns 
from smart card data. In 25th Benelux Conference on Artificial Intelligence (BNAIC 2013).

Brands, T., de Romph, E., Veitch T. and Cook, J. 2014. Modelling public transport route choice 
with multiple access and egress modes. Transportation Research Procedia, Vol. 1, pp. 12-
23.

Bregman, S. 2012. Uses of Social Media in Public Transportation. Transit Cooperative Research 
Program (TCRP) Synthesis 99. Transportation Research Board, Washington.

Cats O., Larijani, A.N., Ólafsdóttir, A., Burghout, W., Andreasson I. and Koutsopoulos, H.N. 
2012. Holding Control Strategies: A Simulation-Based Evaluation and Guidelines for 
Implementation. Transportation Research Record 2274, pp. 100-108. 

Cepeda, M., Cominetti, R. and Florian, M. 2006. A frequency-based assignment model 
for congested transit networks with strict capacity constraints: characterization and 
computation of equilibria. Transportation Research Part B: Methodological, 40, pp. 437–
459.

Cheung, F. 2006. Implementation of Nationwide Public Transport Smart Card in the 
Netherlands: Cost-Benefit Analysis. Transportation Research Record, Journal of the 
Transportation Research Board, No. 1971, Transportation Research Board of the National 
Academies, Washington, D.C., pp. 127-132.

Douglas Economics. 2006. Value and Demand Effect of Rail Service Attributes. Report to 
RailCorp. Wellington, New Zealand.

Florian, M. 2002. Frequency based transit route choice models. Chapter 6 in: Advanced 
Modeling for Transit Operations and Service Planning, ed. William H.K. Lam, Michael G. 
H. Bell.

Furth, P.G., Hemily, B., Muller, T.H.J. and Strathman, J.G. 2006. TCRP Report 113: Using 
Archived AVL-APC Data to Improve Transit Performance and Management. Washington, 
D.C.

Hasan, S., Schneider, C.M., Ukkusuri, S.V. and Gonzalez, M.C. 2013. Spatiotemporal patterns 
of urban human mobility, J. of Statistical Physics, Vol. 151 (1-2), pp. 304-318. 

Hickman, M. 2004. Evaluating the Benefits of Bus Automatic Vehicle Location (AVL) Systems, 
in: D. Levinson and D. Gillen (eds.), Assessing the Benefits and Costs of Intelligent 
Transportation Systems, Chapter 5, Kluwer, Boston.

Joksimovic, D. and van Grol, R. 2012. New Generation Dutch National And Regional  
Models — An Overview Of Theory And Practice, European Transport Conference.



222 Public Transport Planning with Smart Card Data

Kurauchi, F., Schmöcker, J.D., Shimamoto, H. and Hassan, S.M. 2014. Variability of 
commuters’ bus line choice: an analysis of oyster card data. Public Transport, Vol. 6, No. 
1-2, pp. 21-34.

Lee, A., van Oort, N. and van Nes, R. 2014. Service reliability in a network context, 
Transportation Research Record, No. 2417, pp. 18-26.

Ma, X., Wu, Y.J., Wang, Y., Chen, F. and Liu, J. 2013. Mining smart card data for transit riders’ 
travel patterns. Transportation Research Part C: Emerging Technologies, Vol. 36, pp. 1-12.

Morency, C., Trepanier, M. and Agard, B. 2007. Measuring transit use variability with smart-
card data. Transport Policy, Vol. 14, No. 3, pp. 193-203.

Munizaga, M. and Palma, C. 2012. Estimation of a disaggregate multimodal public 
transport Origin-Destination matrix from passive smart card data from Santiago, Chile. 
Transportation Research C, Vol. 24, pp. 9-18.

MVA Consultancy. 2008. Valuation of Overcrowding on Rail Services. Prepared for 
Department for Transport. 

Nijenstein, S. and Bussink, B. 2015. Combining multimodal smart card data, Presented at 
European Transport Conference, Frankfurt. 

Neema, N., Hickman, M. and Ma, Z-L. 2015. Activity detection and transfer identification for 
public transport fare card data, Transportation.

Oostra, R. 2004. Elasticiteitsonderzoek binnen het vervoergebied van HTM. TU Delft (In 
Dutch).

Park, J., Kim, D.J. and Lim, Y. 2008. Use of Smart Card Data to Define Public Transit Use in 
Seoul, South Korea. Transportation Research Record, Journal of the Transportation 
Research Board, No. 2063, Transportation Research Board of the National Academies, 
Washington, D.C., pp. 3-9.

Pel, A.J., Bel, N.H. and Pieters, M. 2014. Including passengers’ response to crowding in the 
Dutch national train passenger assignment model. Transportation Research Part A: Policy 
and Practice, 66, pp. 111-126.

Pelletier, M., Trepanier, M. and Morency, C. 2011. Smart card data use in public transit: A 
literature review. Transportation Research Part C: Emerging Technologies, Vol. 19, No. 4, 
pp. 557-568.

Schmöcker, J.D., Fonzone, A., Shimamoto, H., Kurauchi, F. and Bell, M.G.H. 2011. Frequency-
based transit assignment considering seat capacities. Transportation Research Part B: 
Methodological, 45(2), pp. 392-408.

Schmöcker, J.D., Shimamoto, H. and Kurauchi, F. 2013. Generation and calibration of transit 
hyperpaths. Transportation Research Part C: Emerging Technologies, Vol. 36, pp. 406-418.

Seaborn, C., Attanucci, J. and Wilson, N.H.M. 2009. Analysing Multimodal Public Transport 
Journeys in London with Smart Card Fare Payment Data. Transportation Research 
Record, Journal of the Transportation Research Board, No. 2121, Transportation Research 
Board of the National Academies, Washington, D.C., pp. 55-62.

Significance, VU University, John Bates Services, TNO, NEA, TNS NIPO and PanelClix. 2013. 
Values of time and reliability in passenger and freight transport in The Netherlands. 
Report for the Ministry of Infrastructure and the Environment, Significance, The Hague.

Litman, T. 2013. Transport Elasticities: Impacts on Travel Behaviour. Sustainable Urban 
Transport Technical Document, GIZ. 

Transportation Research Board. TCRP REPORT 95. 2004. Transit Scheduling and Frequency 
Traveler Response to Transportation System Changes. Chapter 9.

Trépanier, M., Tranchant, N. and Chapleau, R. 2007. Individual trip destination estimation in a 
transit smart card automated fare collection system. Journal of Intelligent Transportation 
Systems, Vol. 11, pp. 1-14.

Van den Heuvel, J., Voskamp, A., Daamen W. and Hoogendoorn, S.P. 2015. Using bluetooth to 
estimate the impact of congestion on pedestrian route choice at train stations, Traffic and 
Granular flow ’13, M. Charaibi et al. (eds), Switzerland.

Van Oort, N., Boterman, J.W. and van Nes, R. 2012. The impact of scheduling on service 
reliability: trip-time determination and holding points in long-headway services. Public 
Transport, 4(1), pp. 39-56.



Chapter 11: Ridership Evaluation and Prediction 223

Van Oort, N. and van Nes, R. 2009. Line length versus operational reliability: network design 
dilemma in urban public transportation. Transportation Research Record, No. 2112, 
Washington, D.C., pp. 104-110.

Van Oort, N., Brands, T., de Romph, E. 2015a, Short-Term Prediction of Ridership on Public 
Transport with Smart Card Data, Transportation Research Record, No. 2535, pp. 105-111.

Van Oort, N., Brands, T., de Romph, E. and Flores, J.A. 2015b. Unreliability effects in public 
transport modelling, International Journal of Transportation Vol. 3, No. 1, pp. 113-130.

Van Oort, N., Sparing, D., Brands, T. and Goverde, R.M.P. 2015c. Data driven improvements in 
public transport: the Dutch example, Public Transport, Vol. 7(3), pp. 369-389.

Van Oort, N., Yap, M.D. and Oud, M. 2016. Understanding public transport passenger 
behaviour during (un)planned disturbances: insights from smartcard data. To be 
presented at the Word Conference on Transport Research Society, China.

Wang, W., Attanucci, J.P. and Wilson, N.H.M. 2011. Bus Passenger Origin-Destination 
Estimation and Related Analyses. Journal of Public Transportation, Vol. 14, No. 4, pp. 131-
150.

Wardman, M. 2004. Public transport values of time. Transport Policy, Vol. 11, No. 4, pp. 363-
377.

Wardman, M. 2012. Review and meta-analysis of U.K. time elasticities of travel demand. 
Transportation, Vol. 39, No. 3, pp. 465-490. 

Wardman, M. and Whelan, G. 2011. Twenty Years of Rail Crowding Valuation Studies: 
Evidence and Lessons from British Experience. Transport Reviews 31(3), pp. 379-398.

AUTHOR BIOGRAPHY

Niels van Oort works as an assistant professor Public Transport at Delft 
University of Technology and via his job as a public transport consultant 
at Goudappel Coffeng he is involved in several public transport projects. 
His main fields of expertise are public transport planning, dealing with 
the passenger perspective, service reliability and Big Data. He finished his 
PhD on service reliability in 2011. Niels develops approaches and tools to 
transfer data into knowledge with the aim to improve public transport. His 
research results are available at: https://nielsvanoort.weblog.tudelft.nl/

Ties Brands obtained his two MSc degrees from University of Twente in 
2008 and works at Goudappel Coffeng as a public transport consultant, 
specialized in public transport modelling and (smartcard) data analysis. In 
2015 he finished a PhD project on public transport network optimization. 
He works on projects such as network planning studies, ridership 
predictions, cost benefit analyses and data analyses. In recent years, this 
has included analyses of smart card data from several Dutch cities and 
regions.

Erik de Romph studied Computer Science and received a PhD in Transport 
Planning at Delft University of Technology in The Netherlands. Erik 
is one of the founders of the software package for transport planning: 
OmniTRANS. He was managing director of Omnitrans International from 
2007 to 2013. In 2013 he accepted a chair as professor in transport modelling 
in Delft. Erik has been involved in various research projects using new 
(big-) data sources in transport modelling, such as cell-phone data and 
smart card data.

https://nielsvanoort.weblog.tudelft.nl/


224 Public Transport Planning with Smart Card Data

Menno Yap is working as consultant public transport at Goudappel Coffeng. 
Menno graduated cum laude from the Delft University of Technology 
on the topic ‘robustness of public transport networks from a passenger 
perspective’. At Goudappel Coffeng, Menno is involved in applying and 
improving (data driven) public transport models. He also focuses on the 
role of innovative transportation systems, like automated vehicles, in  
public transport. He recently started a PhD research on optimisation of 
transfers.



Chapter 12: Assessment of Traffic Bottlenecks at Bus Stops 225

A B S T R A C T
 This chapter describes the methodology used in Saitama, Japan to tackle
 traffic bottlenecks in the vicinity of bus stops. Two different kinds of
 tracking data—probe car data and bus smart card data—were utilized
 to study which infrastructure improvements around bus stops are most
 in need. Probe car data are used to assess where buses block the traffic,
 while smart card data help to understand the temporal distribution of
 passenger demand. It has been found that a simple analysis of smart card
 data can be a useful and powerful tool in assisting local authorities to
 strategically decide where to invest their resources, limited as they are.

1. INTRODUCTION 

In recent years, digitized tracking data captures an enormous amount 
of human movement, in real time. The data includes smart card data 
from buses and railway systems, as well as probe person data and probe 
car data, which are collected by GPS-enabled mobile phones providing 
position identification and car navigation systems. Such tracking data cover 
wide areas with great efficiency 24 hours per day and 365 days per year 
(Kawasaki and Hato, 2004).
 Smart card data is more easily available to local authorities and 
various transport planning authorities. The contributors in this book 
discuss several advanced methods for analyse of smart card data at the 
disaggregate level. However, detailed analysis of individual travel patterns 

Chapter12
 Assessment of Traffic Bottlenecks 
at Bus Stops
K. Makimura1,*, T. Nakamura2, T. Ishigami1 and R. Imai3

 1 Institute of Behavioral Sciences, 2-9 Ichigayahonmura-cho, Shinjuku-ku, Tokyo, Japan.  
Email: kmakimura@ibs.or.jp

 2 Department of Urban Management, Graduate School of Engineering, Kyoto University, 
Japan.

 3 Department of Urban and Civil Engineering, Tokyo City University, Japan.
 * Corresponding author

mailto:kmakimura@ibs.or.jp


226 Public Transport Planning with Smart Card Data

are often not done for practical applications as aggregate-level data are 
preferred. There are many useful applications of the aggregate-level smart 
card data (Bagchi and White, 2005 and Pelletier et al., 2011). From the 
standpoint of practical application, this study focuses on smart card data 
only used at the aggregate level.
 There is by now a significant amount of literature on understanding 
travel patterns through digitized tracking (e.g. Akiyama et al., 2011). In 
previous research though mostly a single tracking data source was used, 
but in the light of current advances in the collection of data from various 
trails, it is possible now to create a combined-analysis which uses features 
of data from multiple different trails and to disseminate new knowledge.
 Turning to examples of the application of digitized tracking data in 
road administration, tracking data from ordinary vehicles (hereinafter 
called, ‘probe car data’) are used to grasp traffic behavior and conditions 
for drafting transportation planning and measuring the effects of road 
maintenance and improvement (Momma et al., 2011). Currently, only probe 
car data have been used, but road administrations need to understand 
the bus stop traffic blockage points (Kinuta et al., 2008 and Makimura 
et al., 2010). That is, at which bus stops the traffic is often blocked due to 
buses requiring time to load the waiting passengers needs to be studied. 
Furthermore, the authors exchanged opinions with road administrators of 
local governments, when they faced issues, such as difficulty in acquiring 
a comprehensive picture of the situation because carrying out field surveys 
at every bus stop requires a large volume of work. Hence they confirm an 
overpowering need for efficient extraction of such ‘bus stop traffic blockage 
points’. For this smart card data turn out to be of practical use as will be 
explained in this chapter.
 The objective of this contribution is, therefore, to jointly look at probe 
car data and smart card data in order to establish support measures for 
improving traffic movement in the vicinity of bus stops. The methodology 
is applied to evaluate bus stops in Saitama City, Japan, where both smart 
card and vehicle probe data are available.
 In Section 2 we summarize previous research and discuss the 
positioning of this study. In Section 3 we discuss how the evaluation 
indices are constructed that support decisions to invest in measures that 
improve traffic in the vicinity of bus stops. In Section 4 we verify the 
usefulness of the proposed support method by a case study in Saitama 
City. In Section 5 we summarize and provide an outlook to future work.

2. BACKGROUND OF THIS STUDY

Previous research on probe car data includes consideration of the accuracy 
of the data acquired and the required sample sizes (Ishida et al., 2001), 
routing based on technology for matching collected data to maps (Li 
et al., in press), evaluation of traffic condition from the obtained data 
(Tamiya and Seo, 2002) and measurement of effects on road maintenance 



Chapter 12: Assessment of Traffic Bottlenecks at Bus Stops 227

and improvement (Momma et al., 2011). Consideration of the accuracy of 
massive probe car data and issues connected to required sampling size are 
summed up in particular in the research of Hashimoto et al. (2014).
 Previous research on smart card data includes elucidation of traffic 
behavior and use for traffic surveys utilizing the characteristics of long-
term data, use in demand estimation and in transportation planning as 
discussed in various chapters in this book. Also, in Japan, research on 
smart card data has been conducted for more than 10 years. Okamura et al. 
(2002) examine the potential of ridership data from the common magnetic 
cards used in the Hiroshima metropolitan area to complement or replace 
the existing survey data. Nogami et al. (2011) use smart card data from 
Kochi prefecture and elucidate the public transportation usage by OD 
analysis of the number of trips made per zone and analysis of transfers 
between bus and streetcar. Nakajima et al. (2009) analyse changes in user 
in-vehicle time due to the opening of a new railway in Osaka to gauge 
the ramifications of its opening. Yabe and Nakamura (2008) use smart 
card data from the Tokyo area to analyse the relationships between card 
dissemination rate and bus dwell time, and between reducing dwell time 
and operating hours. Finally, Makimura et al. (2010) initiate the discussion 
on applying smart card data for planning improvements in the bus stop 
facility, which is also the objective of this study.
 In summary, previous research using probe car data focused on 
verifying the accuracy of collected data and on understanding the 
characteristics of the data. Examples of its use to measure the effects of 
road maintenance and improvement are also found in literature. Similarly, 
with environments enabling the collection of large amounts of data over 
long periods bus smart card data could be prepared, and verification of the 
effects of the introduction of smart cards on routes and the opening of new 
routes became possible in previous research.
 Those examples used one type of tracking data for analysis. Combining 
multiple types of tracking data from a single area potentially enables 
further detailed analysis to support public transportation planning.

3. DEVELOPMENT OF EVALUATION MEASURES

The bus stop improvement program based on the Niigata City Omnibus 
Town Plan is an example of a conventional study of bus facility 
improvement (Niigata City, 2007). Under the program a field survey of 
each bus stop was conducted and bus stops (especially candidates for the 
addition of roofs) were selected for improvement of their service level in 
terms of routes and numbers of buses, barrier-free priority zones, roofing 
as well as considerations of access to public facilities such as hospitals.
 Compared to the Niigata study, the important feature of this chapter is 
that evaluation measures are obtained through tracking data which were 
previously difficult to obtain, such as bus travel speed, number of users 
and travel speed of ordinary vehicles.
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3.1 Procedure for Obtaining Evaluation Measures

Figure 1 outlines the procedure to obtain evaluation measures using probe 
car and smart card data. The details of each step are explained in the 
following pages.

Fig. 1. Procedure for study of needs in bus stop facilities and surrounding road infrastructure

Step 1: Compilation of the number of users at each bus stop
Use of smart card data from buses to collect the number of users at each 
bus stop. Through smart card data large numbers of bus stops can be 
analysed, even if there are more than 1,000 bus stops as is the case in larger 
cities.

Step 2: Obtaining ‘dynamic conditions’ at bus stops
Utilization of probe car data and smart card data from buses to set 
indicators according to the predefined objectives and to obtain information 
about variations in traffic usage as per the time of the day, the day of the 
week or the weather conditions. Accordingly, the nine indicators shown in 
Table 1 are set. 
 The average travel speed during the interval is calculated from bus 
smart card data as per the following procedure:
 As data from smart cards are collected at the time of getting on and off 
trains/buses when passengers touch the equipment, then those timings are 
recorded as travel time between bus stops. On the other hand, link travel 
time data are obtained by converting the calculated travel time between 
bus stops to travel time by link. The method of conversion is indicated 
below.
 First, when users touch the equipment with their smart cards, the 
travel time between bus stops is collected and so are the individual ID and 
time recorded. Thus, data are recorded at payment in areas with uniform 
bus fare, and at the time of getting on and off in the areas with distance-
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based bus fares. The required travel time between bus stops is calculated 
with the assumption that the time recorded on the equipment is the time 
the bus arrived at the stop where the passengers were waiting (Figure 2).

Fig. 2. Estimation method of the travel time between bus stops

As data of multiple cards are recorded at bus stops, the first record is 
considered the time of arrival, and the last record as time of departure. 
This helps in estimating the travel time while excluding the stopping time 
at bus stops. If there is any bus stop with no passenger, data at the nearest 
bus stops with records are used and proportionally divided by the distance 
between the bus stops to estimate the travel time.
 Next, the method of conversion of travel time between bus stops into 
travel speed by road link is explained. Simply put, by proportionally 
dividing the travel speed between the bus stops into road links according 
to distance, the travel speed is convertedinto link travel times at 10-minute 
and 60-minute intervals. When doing so, if data of multiple bus routes are 
available, then the bus travel time is considered the average travel time 
between the bus stops for 10 minutes and 60 minutes, respectively. This is 
explained in Figure 3. Considering the location of the bus stops on a link 
below, travel time of the link between Node Y and Node Z in Figure 3 
uses the travel time between bus stop A and bus stop B (TAB) and travel 
time between bus stop B and bus stop C (TBC). Because of the location of 
Node Y, TAB is divided into distance DAY and distance DYB. Then, they 
are proportionally divided according to distance and estimated using the 
equation TYB = TAB * (DYB/DAY + DYB). Similarly, TBZ is estimated as TBC 
*(DBZ/DBZ+DZC). In doing so, travel time between node Y and node Z would 
be TYB + TBZ, and the travel speed is obtained by dividing the result with 
DYZ.
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Fig. 3. Conversion of travel time between bus stops to travel time between links

The data in Table 1 helps to distinguish bus stop usage rates during 
different time periods of the day, different weekdays as well as for 
bus stops located in different types of land-use areas. Moreover, usage 
depending on weather conditions can be analysed, such as the impact of 
rainy days versus clear days. Further, the analysis of probe vehicle data 
helps to determine the bus/ordinary vehicle travel performance around 
bus stops. This is important since the traffic performance in one location 
can vary widely, depending on the time of day. We emphasize once again 
that the indicators set for Step 2 are required but are difficult to capture by 
conventional bus stop improvement programs. Using probe data and smart 
card as described in this chapter simplifies this task significantly. 

Step 3: Static travel conditions around bus stops
The bus service level in terms of the number of buses and routes servicing 
at the bus stop, the number of lanes on the road where the bus stop is 
located and the state of bus bay facility are evaluated. Further, the state 
of the Public Transportation Priority System, the introduction of the  
priority (dedicated) lanes as well as the existence of bus-stop roofs and 
seats are set as indicators. Table 2 summarizes the nine indicators for ‘static 
conditions’.
 While the dynamic conditions of Step 2 can be obtained through 
tracking data, field surveys are required for obtaining the static conditions. 
However, because bus stops with high ridership are already selected at Step 
1, rather than a field survey of every bus stop as was done in the case of 
Niigata City, field surveys can instead be targeted at potentially critical bus 
stops with higher ridership.

Step 4: Analysis of traffic blockage points near bus stops
Traffic blockage points in the vicinity of bus stops refer to spots where 
buses stop to let passengers board or alight and in the process, block the 
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Table 1. Indicators of Dynamic Conditions of Bus Stops

DetailsIndicatorCategory 

Daily average number of users at the stop for weekdays, Saturdays, 
and Sundays/holidays as calculated from smart cardsAverage number of users

Bus usage 
situation

Number of users at the stop according to smart cards, organized by 
month

Variation in number of 
users

Usage percentage during weekday commuting period (7:00 and 
8:00 hours) is calculated as “number of commuter users (7:00 and 
8:00 hours) / weekday number of users”

Usage rate during 
commuting period 
(weekdays)

Usage percentage on weekends and holidays compared with 
weekdays is calculated as “number of Saturday users (persons/day) / 
number of weekday users (persons/day)”

Sunday/holiday usage rate

Calculated for weekdays, Saturdays, and Sundays/holidays as 
“number of rainy-day users (persons/day) / number of clear-day 
users (persons/day)”

Rainy weather usage rate

Average bus travel speed for the stop is calculated for the weekday 
morning peak (7:00 and 8:00 hours), middle of the day (9:00 to 
16:00 hours) and evening peak (17:00 and 18:00 hours)

Average bus travel speed

Bus/ordinary 
vehicle travel 
performance

Calculate variations in average weekday travel speed by month and 
in average travel time by time of day

Variation in average bus 
travel speed

Calculate average travel speed of ordinary vehicles immediately 
before the stop for morning peak, middle of the day, evening peak 
and daily average

Average travel speed of 
ordinary vehicles

Calculate variations in average weekday travel speed by month and 
in average travel time by day time

Variation in average travel 
speed of ordinary vehicles

Table 2. Indicators of Static Conditions at Bus Stops

DetailsIndicatorCategory 

Bus service provider using the stopService provider

State of bus 
operation

Number of routes that service the stopServicing routes

Organized by numbers of buses servicing the stop on weekdays, 
Saturdays, and Sundays/holidaysServicing buses

Number of lanes at the stop’s locationNumber of lanes

Bus 
operation 
environment

Is a bus bay provided at the stop?State of bus bay 
development

Is a roof provided at the stop?State of roof development

Is seating provided at the stop?State of seating 
development

Are routes servicing the stop PTPS routes?State of PTPS introduction

Do routes servicing the stop have priority (dedicated) bus lanes?State of priority 
(dedicated) lane adoption
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subsequent traffic, creating congestion, as illustrated in Figure 4. Extraction 
of traffic blockage points is based on results from probe car data and smart 
card data plotted on digital road maps (hereinafter called, ‘DRMs’). The 
probe car data are used to generate and compare travel speeds of ordinary 
vehicles immediately before and after the bus stops. 
 More specifically, the rate of traffic blockage occurrence is defined by 
using the three travel speeds defined below and as shown in Figure 5.

Fig. 4. Traffic blockage occurring at a bus stop

Fig. 5. Travel speed used to calculate rate of traffic blockage occurrence 

 Vt,i 
bus : Travel speed of bus at time t on link i at which the bus stop of 

interest is located.
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 Vt,i 
car : Travel speed of ordinary vehicles at t time on link i at which the 

bus stop of interest is located.

 Vt,i–1 
car : Travel speed of ordinary vehicles at time t on link (i–1) 

immediately before the bus stop.

Using the three defined travel speeds, two conditions are set (see Figure 6).

 Vt,i 
car – Vt,i 

bus < 0
 

(1)

 Vt,i 
car – Vt,i–1 

car < 0 (2)

The above conditions show ordinary vehicles having a travel speed lower 
than that of buses on the bus stop link (Eq. 1) and an even lower travel 
speed on the link preceding the bus stop link (Eq. 2). Let n be the number 
of travel speed data samples taken at 15-minute intervals for which Eq.1 
holds. The rate of traffic blockage occurrence at the bus stop is then defined 
as follows.

 Blockage Rate = n/N
 

(3)

This is illustrated in Figure 7. A large number of plots in the shaded lower 
left area of the figure indicates that ordinary vehicles are unable to pass 
buses at the stop, meaning that traffic blockages occur.

Road

(DRM)

Travel speed of bus at

the bus stop link

Travel speed of car at bus

stop link

Travel speed of car

at link just before

Travel speed difference between

bus and car
(Average travel speed of car —

Average travel speed of bus)

Y

Travel speed difference between car at

bus stop link and link just before.

(Average travel speed of car at bus stop

link – Average travel speed of car

at link just before)

XRoad

(DRM)

Fig. 6. Conditional expressions using the three travel speeds 

Step 5: Creation of a chart for each bus stop
In the final analysis, effort is made to display the information gathered in 
steps 1 to 4. For easy interpretation and discussion with decision makers 
it was found relevant to use what in Japan are known as ‘hospital-type 
charts’ as shown in Figure 13 below in our case study that is discussed 
next.
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4. SAITAMA CITY CASE STUDY

This section demonstrates the usefulness of the above-discussed 
methodology. The method is applied to all bus stops in Saitama City which 
are served by buses that take smart card payments. The study was carried 
out at the advice of the Omiya National Highway Office of the Kanto 
Regional Development Bureau and public transportation related divisions 
of Saitama Prefecture and Saitama City.

4.1 Saitama City

Saitama City has a Transport Strategy Council which has been carrying 
out a study aimed at developing an urban transport strategy since 2009. 
The strategy aims to achieve improved travel speeds and punctuality 
with better mobility between local hubs and neighboring cities. Buses are 
expected to play a major role in this.
 As shown in Figure 8, Saitama City’s mobility depends crucially 
on north-south railways that connect the city to Tokyo. However, the 
railway network running east to west from the major train stations Omiya 
Station and Urawa Station are underdeveloped, leading to a dependence 
on buses. There is, therefore, a great desire to improve the bus operating 
environment and the bus stops. With over 1,000 bus stops in the city, no 
discussion was begun with the Transport Strategy Council, where to begin 
and how to improve the travel speeds. Given this background, Saitama City 
has been chosen as the target area for this case study.



Chapter 12: Assessment of Traffic Bottlenecks at Bus Stops 235

Fig. 8. Analysis area (Saitama City) and bus stops

4.2 Overview of Tracking Data Use

The study area and analysis period are shown in Table 3. Considering the 
bus operation hours, the data analysis period is from 6 a.m. to 10 p.m. and 
both probe car and smart card data have been collected:

Table 3. Study Area and Analysis Period

DetailsCategory

Saitama City, Saitama PrefectureArea

June 2010 (one month)
Weekdays: 22, Saturdays: 4, Sundays/holidays: 4

Analysis period

a) Probe car data
 The probe car data used for this study were collected from car 

navigation systems installed in ordinary vehicles. Private-sector 
businesses provided travel time data collected at five-minute intervals 
from DRM links. Travel speed for each DRM link was calculated by 
using the travel time data and DRM link extension.

b) Smart card data from buses
 The smart card data used for this study were from ‘Suica’ and 

‘PASMO’, the two major smart cards that are used within the larger 
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Tokyo metropolitan region and have been in operation since March 
2007. As of February 2010, about 65 million records were collected 
every month. In June 2010, the month selected for the analysis, the 
average number of bus travellers using one of these smart cards in the 
target area was 41,659 on weekdays, 25,335 on Saturdays and 18,619 on 
Sundays and holidays.

6.3 Results and Discussion

Results of the method proposed in Chapter 3 are summarized as follows.
 Firstly, the 30 bus stops with higher ridership were selected by 
analysing 802 bus stops in total. Note, that 314 bus stops out of 1,116 that are 
located near railway stations were excluded since they are not the target for 
road or bus stop infrastructure improvements. Under this selection criteria, 
unsurprisingly the selected 30 bus stops are located near public facilities, 
such as schools, hospitals and government offices. These 30 stops accounted 
for about 27 per cent of the ridership.
 Following the previously outlined methodology, the dynamic and static 
conditions of the stops were analysed and traffic blockage points identified. 
Only the previously selected 30 bus stops were evaluated. The authors 
are of the view that it is advisable to decide the number of bus stops to 
be analysed based on conditions, such as the size of the analysis area, the 
percentage of bus stops and the overall percentage ridership.
 As an example of the dynamic conditions, Table 4 presents some 
indicators of the 30 bus stops and Figure 9 presents an in-depth analysis 
of the Daitakubo bus stop. The figure describes in particular the decrease 
of usage during weekends, thus providing valuable information 
for understanding the importance of the bus stop as well as the 
potential impact of bus diversions during weekends for infrastructure 
improvements.
 For the analysis of blockage points the traffic speed indicators shown 
in Table 5 and Figure 10 are important. At the Daitakubo bus stop the travel 
speed is low during weekday mornings and peak in the evenings. The 
travel speed of ordinary vehicles is about the same as that of buses during 
evening peak hours on weekdays.
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Fig. 9. No. of Users at Daitakubo Bus Stop by Weekday, Saturday and Sunday/Holiday
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Fig. 10. Average Travel Speed by Time Segment at Daitakubo Bus Stop 

Using these speed data, the rates of traffic blockage occurrence were 
obtained for four time-periods and in different weather conditions: whole 
days, morning peaks, evening peaks and rainy weather. It was found that 
for some bus stops, the rate of traffic blockage occurrence could not be 
calculated. These are stops located on non-public roads, such as on school 
grounds, or in front of hospitals and thus data on travel speed of ordinary 
vehicles could not be collected.
 The results for two bus stops, that is, Daitakubo bus stop (Ranked as 
number 2 in the final evaluation) and Kyoiku Center-Mae bus stop (Rank 
6; Figure 12) are illustrated. Field surveys confirmed that the Daitakubo 
bus stop has indeed a high rate of traffic blockage occurrence. The reason 
is that the stop is located within a short distance between two intersections. 
Further, there is only one lane in both directions as a result of which the 
vehicles following behind the bus cannot pass and traffic blockage occurs 
(Figure 12(a)). Field surveys also confirmed that the Kyoiku Center-Mae bus 
stop, has a low rate of traffic blockage occurrence even though there is also 
only one lane in each direction. However, at this stop the bus bay is large 
enough to allow vehicles to pass or overtake even when a bus stops (Figure 
12(b)).
 All the results were then arranged in a hospital-type chart for each 
bus stop. Figure 13 shows an example of such a chart. In discussion with 
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There is one lane in both

directions, but there is a

cut at  the stop, so when

buses stop there, it is

possible for the vehicles

following behind to pass

a) Daitakubo

b) Kyoiku

Center-Mae

Rank
Name of

Bus Stop

Rate of traffic blockage occurrence

All day
AM Peak PM peak

Rainy day
7–8 07–18

2 Daitakubo 0.32 0.25 0.62 0.30

Rank
Name of

Bus Stop

Rate of traffic blockage occurrence

All day
AM Peak PM peak

Rainy day
7–8 17–18

2 Kyoiku
Center-Mae 0.04 0.03 0.00 0.44

With one lane in both directions,

vehicles following

behind have difficulty in passing,

and traffic blockage occurs

when buses stop,

Fig. 12. Conditions at Field-surveyed Bus Stops
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the city planners and road administrators, it was confirmed that the 
information collected was indeed helpful. In fact the road administrators 
reported that they wanted to use the charts in meetings and in the 
Transport Strategy Council. (Note that the content of the evaluation of the 
bus stop in Figure 13 is only an example. This is not the final one used by 
the administrators.)

5. CONCLUSION 

A combination of probe car and smart card data was used to study the 
most urgently required infrastructure improvements in the vicinity of 
bus stops. The usefulness of the methodology was confirmed by applying 
it to all bus stops in Saitama City that take payment by smart card. The 
possibility to extract bus stop traffic blockage points from these two data 
sources is a new and very practical application. The usefulness of the 
blockage rate indicator was verified through field surveys.
 A second lesson learned from this study was that presentation of 
analysis results needs to be simple and graphically appealing in order to 
be useful to the decision makers. It was found that for the purpose of this 
study, the creation of what in Japan are known as “hospital-style charts” 
for each bus stop was indeed an attractive way to engage in discussion with 
road administrators.
 Finally, the evaluation criteria proposed in this chapter are highly 
versatile and the two types of tracking data used for analysis can be 
collected nationwide in Japan. In the light of this, although there are issues 
with the use of smart card data, expectations are high that the method 
proposed here (possibly in slightly changed form) will be deployed widely 
for further studies.
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A B S T R A C T
 Availability of AFC smart card data is part of a broader trend whereby
 technology is enabling creation of an array of Automated Data Collection
 Systems for public transportation organizations that will support both
 off-line service and operations planning, as well as real-time service
 management and customer information. This wealth of new data sources
 and analytic tools will assist in enhancing the effectiveness, quality
 and efficiency of service provided to public transportation customers.
 However, many challenges exist; some are specific to the use of AFC data
 including: protection of individual privacy, access and appropriateness
 of AFC data and ownership of customer data. Other challenges affect
 all sources of automated data, including: lack of internal resources
 and technical expertise, conflicting data, corporate data management
 challenges and lack of support by senior management. Areas for future
 research are identified, including one area that has been relatively
 unexplored to date, namely, the use of AFC smart card data to estimate
 service and especially price elasticities; the latter is an essential tool in
developing more creative and sophisticated pricing strategies.

The previous chapters have illustrated how transit smart card data could be 
used in many ways to understand and develop new insights into passenger 
behaviour, system performance and policies.
 Examples included: developing a better understanding of passenger 
behaviour through transit origin-destination estimation, route choice  
and activity behaviour; combining smart card data with other data 
for exploring trip-making and trip purpose; using smart card data for 
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calibrating models; and evaluating policy implications related to level of 
service and equity.
 It is clear that the increasing availability of transit smart card data is 
opening a range of exciting opportunities for research.
 However, the real value of mining this rich source of data will be 
determined by the extent to which it assists public transportation authorities 
and operators to enhance the effectiveness, quality and efficiency of the 
services being provided to customers. This chapter broadens the discussion 
by placing smart card data and its uses into a broader framework for 
Automated Data Collection Systems (ADCS) and repositions it from 
the perspective of the transit organizations, both public transportation 
authorities and operators, who will benefit from the research derived from 
the use of these data sources. ADCS create many opportunities to support 
critical transit organization functions, but also face considerable technical 
and organizational challenges in pursuing these opportunities. The chapter 
will conclude by exploring one significant unexplored area for research 
using smart card data and then provide recommendations for the future to 
build on the efforts to date.

1. BACKGROUND

From the earlier days of development of Transit Intelligent Transportation 
Systems (ITS), there was a recognition among the most progressive transit 
organizations that the data that would be created by Transit ITS (e.g., 
Automatic Vehicle Location, Automatic Passenger Counting, Advanced 
Fare Collection) would be an incredibly valuable resource, which could 
be used to create information to enhance planning and management and 
support business processes and decision-making. This can greatly enhance 
the ability for managers to improve the effectiveness and efficiency of 
the transit services. Today, one would refer to the notions of Business 
Intelligence and/or Data-Driven Decision-Making.
 A small number of transit systems have carried this belief forward to 
continuously mine the data resources provided by Transit ITS and these 
systems are consistently recognised as leaders in the industry. In addition, 
a number of academic researchers have explored even more refined uses of 
such data, to create origin-destination maps and a range of analytic tools 
and analyses. However, the majority of transit systems have not opted, or 
been able, to pursue this avenue and have rather focused their efforts in 
using technology to enhance real-time operations and in particular incident 
management and security; the use of the data created is generally an 
afterthought. In addition, limited research or guidance is there for transit 
organizations on how to use this data.
 More recently, discussion has increased in the general public realm, 
as well as within the transportation industry, on related topics including 
ownership of data, access to data, applications of open data and the 
potential synergistic benefits derived from data fusion and data mining, 
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popularly known as “Big Data”. The transit industry has recently started to 
explore how it relates to these issues and developments and is increasingly 
opening its data to researchers and third-party applications developers.
 However, the transit industry is seeking to expand its use of data, 
so the time is opportune to discuss the use of smart card and other data 
sources for the benefit of the transit industry.

2. AUTOMATED DATA COLLECTION SYSTEMS (ADCS)

Previous chapters focused specifically on research based on data derived 
from smart card systems, but it is important to realize that smart card data 
is only one of an array of data-generating systems. Most of the Automated 
Data Collection Systems (ADCS) supporting transit organizations derive 
from the ITS technologies deployed. ITS is a suite of different systems 
that are often interrelated. Some might be for real-time activities (e.g., 
monitoring, control, security), while others are specifically designed to 
produce data for analysis. However, all of these systems produce data, 
including logs on events, faults, etc., that form a web of automated data 
sources.

2.1 Automatic Vehicle Location (AVL) Systems

Historically, AVL systems started emerging 30 years ago. On rail systems 
location is provided using track circuitry, while bus systems today 
typically use Global Positioning Systems (GPS) as the prime location tool 
for Computer-Assisted Dispatch/Automatic Vehicle Location (CAD/
AVL) systems. The CAD/AVL system is the heart of most Transit ITS 
deployments. It continuously tracks all transit vehicles in real-time, which 
enables efficient and effective operational control, incident management, 
security response and service restoration. 
 By comparing the real location of vehicles to their scheduled location, 
it enables continuous monitoring of schedule adherence. This can then be 
used to provide next stop announcements and to calculate estimated time of 
arrival of vehicles at all stops downstream and thus drive real-time customer 
information at displays at stops, on the Internet, on mobile devices, etc.
 But AVL systems also provide a wealth of data from on-board devices 
(e.g. location, door opening sensors, odometer, etc.) that is geo-coded and/
or time-stamped describing what the transit vehicles are doing. This in 
turn could be transformed into information on schedule adherence and 
On-Time Performance (OTP), running times, dwell times, delays, vehicle 
speeds, etc. It is important to recognise that it is not only the GPS location 
that is important, but that the monitoring compares real-time outcomes to 
schedules.
 CAD/AVL systems are typically used to capture information from a 
number of other on-board sensors (passenger counters, wheelchair ramp, 
bicycle rack, etc.) that can also provide valuable information.
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2.2 Automatic Passenger Counting (APC) Systems

APC systems have also been available for two to three decades and 
are typically based on sensors mounted in doors for buses, which have 
channelized passenger movements and counters at gates for systems, which 
have fare barriers. APC data, when properly matched to specific stops, 
can give detailed profiles of customer activity by stop and time of day. 
This provides a wealth of information on customer demand. This data is 
typically not available off the vehicle in real-time.

2.3 Automatic Fare Collection (AFC) Systems

Early AFC systems used magnetic technology and generally had extremely 
limited data collection and processing capabilities. However, over the last 
decade, AFC technology has been radically transformed. As discussed in 
previous chapters, AFC systems today are increasingly based on contactless 
smart cards, tapped at a reader to register the transaction and are geo-
coded. In some systems, notably those which have fares differentiated by 
trip distance or zone, the smart card is tapped both on entry to and exit 
from the system. AFC data have not typically been available in real-time, 
but this may become possible in the future.
 To date most of these smart cards are issued by the operator or 
authority. However, Open Systems using contactless bank cards are being 
introduced and new Mobile Ticketing technologies using optical or near-
field-communication-equipped mobile phones are deployed in a growing 
number of cities around the world. Whatever the technology, the key 
characteristic is recording geo-coded individual fare transactions, which 
could be linked to a specific card; this enables the analyses highlighted in 
previous chapters. 
 Of these types of systems arguably AFC and AVL are the essential 
elements to attain most of the benefits achievable from the use of ADCS, 
especially since AFC can serve as a limited form of APC when combined 
with AVL data.

2.4 Other Pertinent Data Systems

Although AFC, AVL and APC systems are the core sources of automated 
data, other sources of data exist and are increasingly being considered as 
sources of information for transit planning and management purposes as 
more advanced data fusion and mining tools are developed.

These include:
 • Transit Signal Priority (TSP)

  TSP systems are designed to improve travel times and/or reliability 
at signalized intersections. First generation systems collected little 
information and did not permit matching data from the bus and the 
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traffic controller. Newer generation systems should collect data on 
priority requests and responses and this should enable planners to 
measure the effectiveness of priority strategies, as well as explore more 
aggressive strategies.

 • Vehicle Health (Mechanical Alarms)

  CAD/AVL have always included mechanical alarms to alert control 
room staff about impending mechanical failures, to take remedial 
action and alert maintenance staff. While this data has not been 
extensively used to date, with improved reliability of sensors, this 
should provide a potentially valuable source of information on vehicle 
health and enable more advanced fleet monitoring and maintenance 
planning and management.

 • General Transit Feed Specification (GTFS)

  GTFS was originally developed as a simple but robust standard to 
characterize transit routes, stops and schedules that might be used to 
populate trip planners, such as Google Transit, but also on third-party 
mobile devices.

  More recently, many researchers and other experts have recognised 
that GTFS data also provides a remarkably simple way to build transit 
network models that could be combined with Geographic Information 
Systems (GIS) or forecasting models for different purposes, including 
analysis of performance, accessibility, equity, etc. (see for example, 
Chapters 8 and 11 in this book).

3. A CONCEPTUAL FRAMEWORK FOR ADCS IN A TRANSIT   
 ORGANIZATION

It is obvious from the above discussion, that there is a growing array of 
automated (and other) data sources that are available for off-line and/
or real-time use by transit organizations. The following section provides 
a conceptual framework of the ADCS as it relates to transit organization 
functions.3

3.1  ADCS and Key Transit Organization Functions

ADCS have the potential to affect several key functions, which any public 
transport organization must provide, including both off-line and real-
time processes. The distinction between off-line and real-time functions is 
important both because of the difference in data that is typically available 
off the vehicle in real-time and because of the difference in computational 
 3 This framework is more fully articulated by N. Wilson in the chapter entitled Opportunities 

Provided by Automated Data Collection Systems, in "Restructuring public transport through 
Bus Rapid Transit: An international and interdisciplinary perspective”, edited by Juan Carlos 
Munoz and Laurel Paget-Seekins, published by Policy Press (2015). 
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requirements for real-time applications. The key off-line functions, which 
could be enhanced by ADCS are service and operations planning and 
performance measurement. The key real-time functions are service and 
operations control and management and customer information.

Service and operations planning include specification of services offered 
as well as basic determinants of efficiency in providing these services, here 
known as operations planning. Fundamental policy decisions affecting 
the service offered to the public involve network and route planning, 
frequency setting and timetable development. Given the underlying modal 
technology, these decisions largely specify the service characteristics as 
perceived by the public, which will determine their interest in using the 
system. The operations planning process focuses on vehicle and crew 
scheduling, which are key determinants of the cost of operations given the 
service plan and labour constraints and pay provisions.
 ADCS have significant impact on all aspects of service and operations 
planning, first and foremost through provision of large amounts of data 
with measurable accuracy. ADCS data is replacing largely manually 
collected data with its typical connotations of small sample sizes, uncertain 
and hard-to-measure accuracy and bias. For example, estimation of origin-
destination travel patterns previously relied on passenger surveys and used 
manual passenger counts to expand the resulting seed matrix to the full 
system ridership. With ADCS systems, as seen, a seed origin-destination 
matrix reflecting well over half of all passenger journeys could be inferred 
from ADCS data and then expanded to the full system ridership using the 
same ADCS data. This should result in more effective service plans and 
more efficient operations plans, directly as a result of ADCS systems.

Performance measurement is fundamental in assessing all aspects of service 
delivery. It allows measurement of system performance against policy 
targets, but is also enabling a more refined measurement of the personal 
experience of customers.
 At the system level, public transport is increasingly expected to deliver 
service within specified policy-determined quality ranges, often known as 
Service Standards or Targets. ADCS allow management to measure and 
report system performance as compared to service standards, and thus 
ascertain degree of success with respect to promised level of service. This is 
all the more important if the service is being provided under a contractual 
relationship between a public organizational authority and a private 
(or public) operator. The service contract specifies the service targets, 
performance measures and potential financial incentives/disincentives and 
the ADCS provides a neutral tool for measuring performance against these 
targets.
 From the customer’s perspective, surveys have consistently revealed 
that service reliability is one of the most important service attributes, but 
it has been almost impossible in the past to assess service reliability using 
manually collected data because of the inevitably small sample sizes 
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practical with such labour-intensive data collection methods. Now, with 
AVL systems, it is practical to amass large numbers of observations, even 
of a single scheduled vehicle trip, which could be used to support a range 
of reliability metrics of a traditional operator-oriented nature, for example 
percentage of trips “on time”.
 In addition, by combining AFC and AVL data, it is now possible to 
explore and measure the real experience as perceived by customers. For 
example, one can measure service reliability for an individual customer by 
tracking the travel activity of a single card (without of course knowing who 
that individual is to protect privacy). ADCS enable measurement of service 
reliability and other attributes in ways not feasible before.

Service and operations control and management deals with day-to-day 
operations management, in particular responding to unexpected events 
such as incidents which disrupt normal operations, or significant changes 
in demand. Depending on the level of the event it might not be feasible to 
continue to operate the service as planned, at least for a period of time and 
so an alternative plan might be developed and deployed immediately.
 ADCS systems make it possible to respond more effectively to 
unexpected events, principally through AVL, which provides current 
locations of all vehicles in the system making it possible to develop a better 
recovery strategy than without this information. AFC data has the potential 
to further enhance the response to unexpected events by providing the 
decision-maker with information on the typical travel patterns near 
the disruption at this time of the day so that a better strategy could be 
developed.

Customer information allows the individual customer to be informed 
of the state of the system, which is particularly important in the case of 
disruptions and assists them in their travel planning, given deviations 
from the operations plan. Customers expect current and accurate real-time 
information at all the stages of their journeys through a variety of media 
and if public transport is to be perceived as a high quality alternative to 
driving it must meet these ever-increasing expectations.
 ADCS allows targeting of dynamic customer information to the 
individual through a combination of real-time AVL data and detailed 
profiles of the travel patterns and preferences of the individual developed 
through analysis of their historical travel behaviour as revealed through 
AFC data. Pre-trip information could be based both on the operations plan 
for advanced trip planning, as is the norm for existing journey planners, or 
based on the current state of the system for immediate and en route trip 
planning and re-planning when unexpected events occur. The value of the 
AFC data cannot be underestimated; for a successful customer information 
system, only information of value to the individual, given their current (or 
anticipated) trip-making, should be communicated. To avoid information 
overload, the customer must be provided only important and pertinent 
information.
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3.2 Analytic Framework

The interrelationships between the different transit organization functions 
and the roles that could be played by ADCS are illustrated in Figure 1. This 
figure shows the heart of the system which is responsible for integration 
of the data coming from the ADCS to form a comprehensive picture of the 
current system state, the analysis of this data to support both the real-time 
and off-line functions and the prediction of the implications of different 
strategies on future system performance.

Fig. 1. ADCS and transit organization functions

From this figure it is clear that the ADCS, while essential for effective public 
transport, are just the first step toward optimizing system performance. 
Analysis methods are required to develop a deep understanding of 
factors  that determine performance. Prediction methods are also 
essential in order to anticipate the outcomes of particular actions and 
select preferred strategies. Ultimately the goal is to develop analysis and 
prediction methods, which can function effectively in real-time to support 
the supply management and dynamic customer information functions. 
In the short-term, if the computational burden is too high for real-time 
application, significant value might be achievable through the planning and 
performance monitoring functions.
 Given the complexity of predicting performance of public transport 
systems, which involves understanding customer behaviour as well as 
developing both short-term and longer-term service and operations plans, 
the analysis methods required will inevitably be complicated. They will 
certainly include simulation-based performance models, which are the only 
credible way to join both customer response to information and decision 
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support for operations controllers and managers. Their development will 
be a demanding research activity, which will need a deep understanding of 
both the demand for transport services and their performance.
 While a comprehensive model encompassing all these desirable 
features remains in the future, there has been progress on some of the key 
modules and analyses required for such a model. The contributions in this 
book illustrated the wide range of research underway around the world, 
which are leading to new analyses of system performance and customer 
behaviour, as well as to the development of new methodological tools that 
may someday be incorporated into the above analytical framework.

For example, smart card data is being used to research:

 • Path choice/transit assignment (including impact of transfers, network 
choices, crowding, information, etc.).

 • Transfer patterns.

 • Route/vehicle loading.

 • Service reliability as experienced by customers.

 • Variations by time of day, day of week, etc.

 • Inference of residence location and socio-demographic information.

 • Comparison with travel surveys to perform validity checks.

 • Customer retention rates.

 • Impact of weather on travel behaviour.

 • Shopping vs. mode access behaviour.

Analysis of smart card data is helping to formulate potential real-time 
operational management modules, such as:

 • Real-time changes to operational plans,

 • Real-time intermodal coordination, and

 • Incident management inputs/outputs:

 – Likely scenarios for traveller response,

 – Contingency plans,

 – Emergency information provision,

 – Transfer management, etc.

It is clear that this research has many practical applications for transit 
organizations, but the challenges in transferring this knowledge and in 
building advanced analytic tools within transit organizations, are in most 
cases significant.
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4. CHALLENGES

This section will discuss some of the technical and organizational 
challenges that create barriers to transferring the knowledge gained to 
transit organizations so that they can enhance the effectiveness, quality 
and efficiency of service provided to transit customers. These are broadly 
defined and based on extensive discussions conducted with transit 
organizations, but will not necessarily be those experienced by any given 
transit organization. 

4.1 Challenges Specific to AFC Data

The previous chapters outlined many of the complex methodological 
challenges met in using smart card data for research. Some of the 
methodological challenges encountered include:

 • Data quality. 

 • Large volume of data produced and ability to process.

 • Methodologies to expand data samples.

 • Determination of geographical location, especially in open systems 
without check out.

 • Distortions of behaviour caused by pricing. 

 • Distortions in longitudinal series caused by card expiry date, etc. 

Transit organizations can also face significant policy or organizational 
challenges to use smart card data. Some of these include the following.

Protection of individual privacy is a paramount societal policy of special 
concern that affects the use of smart card data. Rules exist at different 
levels, both national/state or province/regional, and can vary significantly 
from jurisdiction to another. In some case, efforts to anonymize cards might 
be insufficient to satisfy some privacy advocates and policymakers.

Access and appropriateness of AFC data has been a serious limitation in 
past AFC technologies. Fare collection technologies have been traditionally 
designed to control the collection of revenues and ensure financial 
accountability. From this perspective, revenues must be counted and 
secured, but ridership need only be monitored at broad aggregate levels 
(e.g., by bus by day and perhaps by run); they were not intended to collect 
stop-level passenger data. This is changing rapidly when introducing new 
systems, but legacy smart card systems will not necessarily have each 
transaction logged and geo-coded. Much of the research illustrated in 
previous chapters derived from recent advanced AFC systems that enable 
time and geography-sensitive customer-level monitoring.

Ownership of customer data is always an issue, but will be even more 
complex as new approaches to fare collection involving third parties (e.g., 
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banks, mobile device companies) are deployed. Transit organizations often 
neglect to carefully specify the public ownership of data in systems that 
are primarily designed for purposes other than to collect data, but this 
will become even more complex and important, in a future involving Open 
Fare Collection System and Mobile Ticketing. Private companies, such as 
banks and mobile communication carriers, are more likely to be aware of 
the importance of the ownership of data and to have the required expertise 
in the associated legal aspects. Public entities will have to significantly 
expand their expertise in this area if they intend to retain the ability to use 
the data created by AFC systems.

4.2 Other Challenges Related to ADCS (including AFC data)

Beyond the specific challenges revolving around the use of AFC data, there 
are many other significant challenges related to the effective use of ADCS in 
transit organizations,4 including:
 • Lack of internal resources and technical expertise,

 • Conflicting data,

 • Corporate data management challenges, and

 • Lack of support by senior management.

Lack of internal resources and technical expertise: In most agencies there 
is a lack of resources and technical expertise for analysis using ADCS 
data. This requires expertise on one hand on technical tools and processes 
for data mining and visualization, but on the other, on transit business 
processes. At the same time, there is generally a lack of resources for 
Information Technology (IT) data management support.

Conflicting data: Conflicts sometimes occur between different sources 
of data, which can undermine credibility and dampen use. Problems 
encountered include:

 • Lack of an integrated data warehouse and the resulting existence of 
multiple databases with different coding of the same information (e.g., 
bus stop inventory),

 • Multiple sources of GPS location, from different on-board systems (e.g., 
AVL vs. AFC),

 • Conflicting ridership data from different sources, such as APC and 
AFC systems. 

Corporate data management challenges: There are also various challenges 
related to organization of automated data within the organization and its 

  4 This section is based on research by B. Hemily on behalf of the U.S. Department of 
Transportation and ITS America, entitled The Use of Transit ITS Data for Planning and 
Management and Its Challenges; a Discussion Paper, Final Report – Revised July 28, 2015.
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management. In many transit organizations, the IT Department might 
be under-resourced and data management will be a secondary priority 
compared to basic IT network hardware and software responsibilities.
 Some of the typical data management challenges that have been 
identified include the following:

 • ITS technology supplier ownership of data in legacy systems, limiting 
use by transit organization,

 • Data storage: managing the volume of data, especially if there is a lack 
of an integrated data warehouse,

 • Lack of (or unclear) data retention policies,

 • Lack of systematic inventory of databases,

 • Use of proprietary, or just different, data formats and even definitions 
by the suppliers of ITS technologies, making interoperability and data 
integration challenging,

 • Missing or corrupted data (including “Bad Day” anomalies),

 • Lack of diagnostic tools provided by suppliers to determine cause of 
data collection/matching failures,

 • Lack of clarity about policies and procedures with respect to the 
management and provision of Open Data, etc.

Lack of support by senior management: More generally, policy boards and 
senior managers of transit organizations need to continuously focus on 
ensuring sufficient funding to operate and expand the transit system and 
building the stakeholder coalition to do so. Technology is often a secondary 
concern and they are often not very interested in ITS, even less so in the 
data that ITS create. The transit industry is by-and-large characterized 
more by an operations-driven culture than by a data-driven decision- 
making culture. However, it could be observed that interest in ADCS and 
the use of data for management and policy is growing, creating more 
opportunities for fruitful collaboration between academic researchers and 
transit organizations, as illustrated by some of the examples in previous 
chapters.

5. AN UNEXPLORED AREA FOR RESEARCH USING SMART CARD   
 DATA: ELASTICITIES AND PRICING STRATEGY

One area of research has remained relatively unexplored to date and that 
is to use AFC smart card data as a tool for measuring customer sensitivity 
to service and price changes. This is by calculating the related elasticity, 
i.e. the percentage change in ridership to the related percentage change in 
service supply (service elasticity) or price (price elasticity).
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 Smart card data allows longitudinal analysis of each customer by 
monitoring trip-making of each card, as identified through their unique 
card number (without identifying the specific individual). This means that 
changes in ridership could be corelated with changes in service or fare 
levels, providing an obvious source of data for calculating elasticities. This 
analysis could be further segmented: by fare category represented by the 
card (adult, student, senior); by type of rider (as represented by the fare 
product they use, e.g., pay as you go for occasional riders and monthly 
or annual passes for frequent riders); by geographic area; by trip purpose 
(commuter, school, shopping); etc. Elasticities are very hard to measure 
manually and the last significant research in this area dates from several 
decades ago.5
 Service elasticities would be valuable, but calculating fare elasticities is 
perhaps even more important for transit organizations, since they directly 
affect the organization’s pricing strategy and thus the “Demand” for transit 
service, but are areas of much uncertainty. Figure 2 illustrates how “Pricing 
Strategy” relates to the earlier ADCS conceptual framework.

Fig. 2. “Pricing Strategy” as a new ADCS-related transit organization function

The pricing strategy of a transit organization affects the heart of revenue 
management and is a critical function. Introduction of smart card 
technology was often promoted as enabling greater flexibility in the 
pricing strategy: new products could be much more easily introduced and 
creative targeted or time-limited fare products could be experimented with. 
However, the risks in experimenting with revenue management are huge 
and the uncertainty has been great. To date there has been:

  5 TCRP Report Volume 95 Chapter 12 (2004) Traveler Response to Transportation System 
Changes synthesizes much of the prior research on fare elasticity values.
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 • Little accessible information on smart card use, customer behaviour 
and impacts to help in the planning of new smart card deployments, 
and 

 • There had been no information available to transit organizations from 
previous experience with AFC technology on the behavioural impacts 
that might result from introducing smart cards, such as potential 
customer switching between media, changes in ridership patterns, etc.

As a result, there was little basis for managing the associated potential risks. 
Given the requirement for transit organizations to be conservative with the 
stewardship of public funds, there is little incentive to innovate fare policy, 
even when introducing new, more flexible, AFC technology.
 However, the data that is becoming available from existing smart 
card systems is providing a valuable resource that could help transit 
organizations better understand the revenue risk vs. the ridership 
potential of new pricing strategies. This is the essential question that 
transit organizations must ask themselves, with the important corollary of 
understanding how any new pricing strategy or product affects equity, by 
type of customer, by jurisdiction, etc.
 Although this analysis extends beyond the normal realm of engineering 
and planning researchers, it is important to transit organizations, could 
be analysed through AFC smart card data and is part of the global ADCS 
conceptual framework. In addition, limited targeted pricing innovations 
could be structured and tested and then monitored using smart card data.

Research using smart card data might help transit organizations answer a 
range of uncertainties related to pricing strategies:

 • What is the pass multiplier (Monthly, Weekly, Daily)?

 • How sensitive are customers to price increments per zone?

 • Is there a market for special fares for short trips?

 • What might be the maximum allowed time for a journey?

 • What is the sensitivity to peak vs. off-peak pricing strategies?

There are many other suggestions for innovative pricing strategies where 
analysis would help and might be feasible to explore using AFC smart card 
data. These include:

 • Evening and/or weekend fare.

 • Weekend pass.

 • University or Employer based discounted annual pass (U-Pass, Eco-
pass) use rates by time of the day.

 • Summer pass for students.

 • Student freedom pass (after 4PM/weekends).
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 • Co-pricing with sports/entertainment events.

 • Passes to condominium buyers (in lieu of parking).

 • Social fares (unemployed).

 • Loyalty schemes.

 • Shared-use mobility co-pricing (bike-share, car-share), etc.

6. CONCLUSIONS: LOOKING TO THE FUTURE

This book has presented many examples of the exciting research underway 
that is building upon the growing availability of AFC smart card data, 
thus illustrating its value as a resource to analyse important issues related 
to transit system performance, customer behaviour and even public 
transportation policy issues.
 This chapter has shown that availability of AFC smart card data is part 
of a broader trend whereby technology is enabling creation of an array of 
Automated Data Collection Systems that will support both off-line service 
and operations planning, as well as real-time service management and 
customer information. This wealth of new data sources and analytic tools 
will assist transit organization to enhance the effectiveness, quality and 
efficiency of service provided to customers.
 This chapter has also identified one area that has been relatively 
unexplored to date and that could benefit from more in-depth research 
using AFC smart card data, namely, the analysis of service and especially 
price elasticity that are an essential tool in developing more innovative and 
sophisticated pricing strategies.
 Looking towards the future, the following are some recommendations 
to build on the efforts to date.

Methodological Research: The research described in this book has shown 
the progress made in addressing substantial methodological issues such 
as the inference logic required to build Origin-Destination matrices from 
open system smart card data. Nonetheless, many methodological issues 
still remain. Some of these are generic in nature, while others are unique 
to the AFC architecture and pricing strategy in a specific community. 
More research will stimulate more discussion around key issues to build 
consensus within the analytic community.

Data Fusion: This book has already illustrated examples of research based 
on data fusion of smart card data with other sources of data. One area 
that merits more attention might be efforts to combine smart card and 
demographic/socioeconomic data to define cohesive market segments as 
a basis for analysing travel behaviour. Privacy concerns typically prevent 
direct knowledge of an individual, but fare categories give a first cut at 
segmentation and might be combined with other sources of data.
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Price and Service Elasticity Research: As mentioned above, there is a 
unique opportunity offered through AFC smart card data to research 
customer sensitivity to service and price changes and thereby measure 
service and price elasticity for different market segments. These will be of 
particular importance for the transit organization’s pricing strategy.

Technology Transfer: One of the exciting aspects of the body of research 
emerging from AFC smart card data is that it relates more directly to the 
needs of transit organizations than do other areas of research. It is often 
more directly accessible and applicable for transit organizations. For 
example, few transit agencies have advanced demand estimation or mode 
choice models, but all transit organizations check on-time performance 
and service reliability, even if only manually. This provides researchers 
with an ongoing basis for dialogue with transit organizations: they need 
access to the smart card data, but can offer as a quid pro quo analyses that 
are pertinent to transit organizations. This can serve to bridge the gap that 
often exists between the research and practitioner communities and much 
of the research in this book illustrates the kind of partnership that can 
emerge from such exchanges.

ADCS Capacity Building: However, as outlined before, transit 
organizations face many significant challenges in using AFC and other 
ADCS data. There is a clear need for transit organizations to build their 
ADCS capacity. This means addressing the organizational and data 
management challenges, developing the tools, resources and ability to 
transform data and analyses into actionable information, but mostly 
building the business case that will convince senior management and policy 
boards of the value of data-driven decision-making and the positive return 
on investment in building and supporting the systems that will create and 
analyse the required data. The research community should work with 
transit organizations in developing these business cases and in building this 
capacity.

Towards Big Data and Smart Cities: With expansion of ADCS data 
sources internally within transit organizations and the universal growth 
of open data sources, more avenues should open up for exciting research. 
This is leading to the much talked-about world of Big Data and Smart 
Cities. AFC smart card data may actually become one of the pillars to 
pursue these visions. Beyond data fusion, development of the data mining 
methodologies will be a focus area of growing importance in this respect 
and researchers of AFC smart card data are among the pioneers of Big Data. 
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